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1

Introduction

Inferences about test takers in educational testing have been primarily based on
their responses to the items. Information from the time needed to complete an item
has been largely ignored because the recording of response times was unpractical
with paper-and-pencil tests. Nowadays, computer based testing makes the collection
of response times straightforward. However, the question what to do with this
additional data source remains.

Of course, we can ignore the response times and base our judgements about
test takers or the quality of a test on the response patterns only. Consider Jan and
Paul, two students who both want the job of teaching assistant for our 2nd year
statistics course. To make sure the best of the two is hired, the teacher gives them a
two-item test on regression analysis, both multiple-choice items. As it happens, Jan
has both items correct but Paul gives an incorrect answer to item 1. When their
responses to these items are all we know about them, we conclude that Jan has the
best knowledge about regression analysis. But when looking at the time they took
to complete the test, we see that Paul answered the items in 35 and 46 seconds. Jan
was quick and answered the items in 5 and 6 seconds, respectively. That, however,
appears to be a bit too quick, since reading the item and looking up the appropriate
information from the table should take more time, casting doubt on Jan’s results.
Upon asking, Jan is so honest to admit he just guessed both items. Jan picked
the correct answers by sheer luck and it was Paul who answered seriously thus we
hire him for the job. Had we looked at the responses only, a valuable source of
information from the response times would have been missed.

For sure, the above example is just a simple illustration and a more advanced
approach is needed to evaluate the advantages of response time information. This
thesis will discuss statistical methods for the joint analysis of responses and response
times on test items.



2 1 Introduction

1.1 Measuring Ability and Speed

The field of psychometrics is concerned with the theory and methods of educa-
tional and psychological measurement (psycho; relating to the mind, metric; refers
to measurement). Think of, for instance, the measurement of reading ability or a
personality trait like extraversion. However, someone’s knowledge about the fall of
the Roman empire is not directly observable, but only trough its manifestations. Es-
timates of someone’s ability level, therefore, are usually obtained by administrating
tests or questionnaires.

A body of theory is then required to make inferences about the unobserved
abilities of the test takers from their observed responses to the items. Item response
theory (IRT) has been developed for exactly that. IRT is a theory that describes
the use of mathematical models for measuring abilities or attitudes from test data.
IRT models describe the probability of a correct response of a test taker to an item
as a function of his/her ability and the characteristics of the item. For example,
unidimensional IRT models, like the 2-parameter model, have an ability parameter
for every test taker while for each item a difficulty and discrimination parameter
are present (Lord & Novick, 1968; Embretson & Reise, 2000). The normal-ogive
formulation of the 2-parameter IRT model is given by

E(Y ) = Φ(aθ − b), (1.1)

where E(Y ) denotes the probability of giving a correct response (Y = 1) to the
item, given ability level θ, and Φ(·) denotes the normal cumulative distribution
function. The item characteristics are described by the discrimination parameter a
and the difficulty level of the item b. The basic idea is that a higher ability leads to
a higher probability of giving a correct response.

Following that same basic idea an equivalent can be formulated for a response
time model: a higher speed of working leads to a lower expected response time.
That is, a person specific parameter is incorporated into a model for response times
that accounts for individual differences between test takers. Such a parameter can
be found in response time models presented by, for instance, Scheiblechner (1979);
Thissen (1983); Maris (1993); Schnipke and Scrams (1997) and van der Linden
(2006). Where the test is supposed to measure ability as the underlying construct
for the responses, it can be assumed to measure speed as the underlying construct
for the response times as well.

However, time differences between items should be included in the model, too.
Items in a test usually vary in their difficulty, but it is reasonable that they vary
in time intensity as well. Think, for instance, of an item with a text passage where
a missing word has to be filled in versus an item where one has to summarize
the text passage in 50-70 words. These differences in time intensity between items
are therefore modeled by an item parameter, λ. This parameter reflects the time
needed to solve an item and can be seen as the analogue of the difficulty parameter
b. However, it is not necessarily so that a more time intensive item is also more
difficult.
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Response times are skewed to the right because they are restricted to be greater
than zero. The log-transform has been applied often to account for this skewness
(Schnipke & Scrams, 1997; van der Linden, 2006). Assuming that the log-response
time T follows a linear model, then E(T ) = −ζ + λ, where ζ denotes the level of
speed of the test taker. This model was suggested earlier by van der Linden (2006).
However, a question might show less variability around its mean time intensity λ
than predicted by ζ. Such an effect can be considered as the discriminative power
of an item and therefore a time discrimination parameter φ is introduced. This
parameter controls the decrease in expected response time on an item for a one step
increase in speed of a test taker. It is the analogue of the discrimination parameter
a in Equation 1.1. Subsequently, the log-response time T follows a linear model
according to:

E(T ) = −φζ + λ. (1.2)

Comparing (1.2) with (1.1), it can be seen that the minus sign is now in front of
the person parameter, reflecting on the one hand that a higher speed of working
leads to lower response times and on the other hand that more time intensive items
lead to higher response times.

An illustration of the effect on time intensity on the expected response time
is given in Figure 1.1. In this figure, both Item Characteristic Curves (ICC) for
the IRT model (left) and Response Time Characteristic Curves (RTCC) (right)
are plotted against the latent trait. The ICCs illustrate that the probability of a
giving a correct response increases with ability. Vice versa, the RTCCs show that
the expected response time decreases with speed. For both measurement models,
two curves are plotted that show the shift in probability/time as a result of a shift
in difficulty/time intensity. The above RTCC curve reflects the most time intensive
item (λ = 4). Given the level of speed, the expected response times are higher for
this item than for the item with λ = 3.
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Fig. 1.1. ICC (left) and RTCC (right) curves for two items with different time intensity
and difficulty but equal discrimination parameters.
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The effect of item discrimination on the ICCs and RTCCs is illustrated in Figure
1.2. It can be seen that the difference in expected RTs between test takers working
at different speed levels is less for the lower discriminating item.
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Fig. 1.2. ICC and RTCC curves for two items with different discrimination parameters,
where b = 0 and λ = 4

The RTCC thus shows the decrease in expected response time as function of
speed. One way to look at this curve is that the RTCC represents the expected
response times for a population of test takers with different speed levels. Another
viewpoint could be the shift in expected response time if a test taker chooses to work
faster. It can be seen that, the faster a test taker works, the lower the difference in
expected RTs on the items is. This is the equivalent of a high ability candidate who
has almost equal probabilities of a correct response on two low difficulty items.

These measurement models for ability and speed are the core of the methods
presented in this thesis. In the next section will be discussed how these univariate
models generalize to a multivariate model that forms the starting point for the
following chapters.

1.2 Modeling Covariation Between Responses and Response
Times

In multivariate statistical analyses the interest is usually focussed on the depen-
dencies between outcome variables. Advantages of joint inferences over univariate
inferences are that they are often more informative, leading to a better understand-
ing of the subject, and possible gains in efficiency of the analyses with respect to
parameter estimation. Possible interesting questions are what the joint analysis of
speed and ability tells us about test taker behavior (remember Jan and Paul) or
how response time information can enhance test development. To answer these kind
of questions, the possible dependencies between the responses and response times
have to be modeled.
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A common view in IRT modeling is to see a person as a random draw from a
population of test takers (Holland, 1990). By specifying a population distribution
for the ability parameters of the test takers, this naturally leads to a hierarchical
model, where the responses to the items are seen as nested within subjects. That
is, the ability parameter is a random person effect that models the heterogeneity
between test takers. Thereby, ability is assumed to explain all associations between
the responses on different items: Responses on two items in a test are assumed
to be locally independent given ability. The local independence assumption has a
long tradition in IRT (e.g. Lord, 1980; Holland & Rosenbaum, 1986). Further, the
population distribution for ability is usually assumed to be normal.

Analogously, the response times on the items can be seen as nested within test
takers, too. Again this leads to a hierarchical model, where the speed parameter is
the random subject effect, drawn from a population of test takers. Thereby, these
random effects model the heterogeneity in the observed response times between
test takers. Therefore, conditional on the random speed parameters, there should
be no covariation left between the response times on different items. In other words,
conditional independence is assumed in the response time model as well. In both
measurement models, the conditional (local) independence assumption between the
observations on different items implies that the random effects should be constant
over the items. That is, a test taker is assumed to work at a constant level of ability
and a constant level of speed during a test.

The ability and speed parameters are, of course, nested within the test takers.
Instead of formulating two separate population models (one for ability and one for
speed), it is attractive to allow for covariation between the two traits. Assuming a
multivariate normal distribution for the population model enables the modeling of
dependencies between the responses and the response times that can be attributed
to the test takers. The idea of modeling dependencies between multivariate out-
comes via the random effects structure has been used earlier. Examples can be
found in Snijders and Bosker (1999); Gueorguieva (2001) and Liu and Hedeker
(2006) and a recent overview of this topic was given in McCulloch (2008). It was
van der Linden (2007) who proposed this generalization to a hierarchical framework
to study responses and response times on test items simultaneously.

Now a third assumption of conditional independence follows from the previous
two. If test takers work with constant speed and constant ability during a test, then
within an item these parameters should capture all possible covariation between the
responses and response times. That is, the responses and response times on an item
are assumed to be conditionally independent given the levels of ability and speed
of the test takers.

The other possible source of covariation between the responses and response
times results from the items in the test. For instance, this happens when more
difficult items tend to be more time intensive. The hierarchical model is readily
extended by assuming a population model for the item parameters that is similar
to the population model for ability and speed.

Thereby, the hierarchical framework is obtained as proposed by van der Linden
(2007) that forms the starting point for this thesis. This framework accounts for two
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possible sources of covariation between the responses and response times: the test
takers and the items. However, this model is rather descriptive than explanatory.
In this thesis, structural models will be proposed that address underlying causes
of possible dependencies between the responses and response times, pertaining to
both the person and the item side. The development of these models also requires
the development of the necessary estimation methods and ways to test hypotheses.
In the next section will be described how all these topics are divided over the
remainder of this thesis.

1.3 Outline

Assessing the differences in ability between test takers or groups of test takers is one
of the main goals of testing. In Chapter 2 (published as Klein Entink, Fox, & van
der Linden, in press), the focus is on a better understanding of these differences
in ability and speed. A multilevel model is developed that allows the incorpora-
tion of covariates for explaining differences between individuals and groups of test
takers. Bayesian Markov Chain Monte Carlo methods are presented to estimate all
model parameters concurrently. Model specific test statistics are derived to evaluate
hypotheses about covariates and group differences relating to ability and speed.

Chapter 3 (Klein Entink, Kuhn, Hornke, & Fox, in press) is a study to the rela-
tionships between item characteristics and item content for tests with a cognitive,
rule-based design. A structural model on the side of the item parameters allows
the determination of both time intensity and difficulty of design rules in the test.
This allows a better understanding of the relationships between item characteris-
tics and item content. The application of the model is illustrated using a large-scale
investigation of figural reasoning ability.

The use of Box-Cox transformations to obtain different distributional shapes
for response time models were considered in Chapter 4 (Klein Entink, van der Lin-
den, & Fox, in press). Box-Cox transformations aim to transform skewed data (like
response times) to normality, which has great advantages because of its conjugacy
with the larger modeling framework. A transformation-invariant implementation
of the Deviance Information Criterium (DIC) is developed that allows for com-
paring model fit between models with different transformation parameters. The
performance of a Box-Cox normal model is investigated using simulation studies
and a real data example. Showing an enhanced description of the shape of the re-
sponse time distributions, its application in an educational measurement context is
discussed.

Detailed simulation studies are performed in Chapter 5 (van der Linden, Klein
Entink, & Fox, in press) to show how additional response time information might
affect the estimation of IRT model parameters. It is argued that response times can
improve IRT parameter estimates with respect to bias as well as accuracy of the
estimates.

Chapter 6 explores the generalized mixed model framework for the joint analysis
of responses and response times. It is shown that some analyses can be performed
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within the class of multivariate generalized linear mixed models, thereby providing
fast and easy to use statistical methods for inferences with commercial available
software. However, the modeling possibilities are restricted to Rasch-kind models,
not allowing for discrimination parameters (or guessing) in the two measurement
models.

This thesis concludes with a discussion and some suggestions for further re-
search.





2

A Multivariate Multilevel Approach to the
Modeling of Accuracy and Speed of Test Takers

Summary. Response times on test items are easily collected in modern computerized
testing. When collecting both (binary) responses and (continuous) response times on test
items, it is possible to measure the accuracy and speed of test takers. To study the relation-
ships between these two constructs, the model is extended with a multivariate multilevel
regression structure which allows the incorporation of covariates to explain the variance in
speed and accuracy between individuals and groups of test takers. A Bayesian approach
with Markov chain Monte Carlo (MCMC) computation enables straightforward estima-
tion of all model parameters. Model-specific implementations of a Bayes factor (BF) and
deviance information criterium (DIC) for model selection are proposed which are easily
calculated as byproducts of the MCMC computation. Both results from simulation stud-
ies and real-data examples are given to illustrate several novel analyses possible with this
modeling framework.

2.1 Introduction

Response times (RTs) on test items can be a valuable source of information on
test takers and test items, for example, when analyzing the speededness of the test,
calibrating test items, detecting cheating, and designing a test (e.g., Bridgeman &
Cline, 2004; Wise & Kong, 2005; van der Linden & Guo, in press; van der Linden,
Breithaupt, Chuah, & Zang, 2007; van der Linden, 2008). With the introduction of
computerized testing, their collection has become straightforward.

It is important to make a distinction between the RTs on the test items and
the speed at which a test taker operates throughout the test, especially when each
person takes a different selection of items, as in adaptive testing. For two different
test takers, it is possible to operate at the same speed but produce entirely different
RTs because the problems formulated in their items require different amounts of
information to be processed, different problem-solving strategies, etc. Models for
RTs should therefore have separate parameters for the test takers’ speed and the
time intensities of the items.

Another potential confounding relationship is that between speed and accuracy.
It is well known that, on complex tasks, these two are different constructs (see,
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for instance Kennedy, 1930; Schnipke & Scrams, 2002). Tate (1948) was one of the
first to examine the relationship between speed and accuracy on different tests. He
concluded that, for a controlled level of accuracy, each test takers worked at a con-
stant speed. Furthermore, test takers working at a certain speed do not necessarily
demonstrate the same accuracy.

Some of these findings can be explained by the well-known speed-accuracy trade-
off (e.g., Luce, 1986). The trade-off reflects the fact that speed and accuracy are
main determinants of each other. Also, they are negatively related. When a test
taker chooses to increase his speed, then his accuracy decreases. But once his speed
is fixed, his accuracy remains constant. Observe that this trade-off involves a within-
person constraint only; it does not enable us to predict the speed or accuracy of
one person from another taking the same test. In order to model the relationship
between speed and accuracy adequately, we therefore need a model with different
levels. This multilevel perspective has not yet been dominant in the psychometric
literature on RT modeling. Instead, attempts have been made to integrate speed pa-
rameters or RTs into traditional single-level response models (Verhelst, Verstralen,
& Jansen, 1997) or, reversely, response parameters into RT models (Thissen, 1983).
However, a hierarchical framework for modeling responses and RTs was introduced
in van der Linden (2007). The framework has separate first-level models for the
responses and RTs. For the response model, a traditional item-response theory
(IRT) model was chosen. For the RTs, a lognormal model with separate person
and item parameters was adopted, which has nice statistical properties and fitted
actual response time data well (van der Linden, 2006). At the second level, the joint
distributions of the person and item parameters in the two first-level models were
modeled separately.

Observe that, because the framework in this chapter does not model a speed-
accuracy tradeoff, it can be used just as well to analyse responses and RTs to
instruments for non-cognitive domains, such as attitudes scales or personality ques-
tionnaires.

Because the first-level parameters capture all systematic variation in the RTs,
they can be assumed to be conditionally independent given the speed parameter.
Likewise, the responses and RTs are assumed to be conditionally independent given
the ability and speed parameter. Such assumptions of conditional independence
are quite common in hierarchical modeling but may seem counterintuitive in the
current context, where the speed-accuracy trade-off is often taken to suggest that
the frequency of the correct responses increases if the RTs go up. However, this
confusion arises when the earlier distinction between speed and RT is overlooked.
The trade-off controls the choice of the levels of speed and accuracy by the individual
test taker whereas the conditional independence assumptions address what happens
with his response and RT distributions after the levels of speed and accuracy have
been fixed.

Besides being a nice implementation of the assumptions of local independence
for RTs and responses, this framework allows for the incorporation of explanatory
variables to identify factors that explain variation in speed and accuracy between
individuals who may be nested within groups. The current chapter addresses this
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possibility; its goal is to extend the framework with a third level with regression
and group effects and to make this result statistically tractable. The result is a
multivariate multilevel model for mixed response variables (binary responses and
continuous RTs). At the person level, just as in the original framework, it allows
us to measure both accuracy and speed. Test takers can therefore be compared to
each other with respect to these measures. But at the higher levels the extended
framework also allows us to identify covariates and group memberships that explain
the measures as well as their relationships. Also, the item parameters are allowed
to correlate.

Analysis of the extended model is performed in a fully Bayesian way. The mo-
tivation for the Bayesian treatment is its capability of handling complex models
with many parameters that take all possible sources of variation into account. A
new Gibbs sampling procedure (Geman & Geman, 1984; Gelfand & Smith, 1990)
was developed which applies not only to the current framework but to the entire
class of nonlinear multivariate multilevel models for mixed responses with balanced
and unbalanced designs. All parameters can be estimated simultaneously without
the need to fine-tune any parameters to guarantee convergence, for instance, as in
a Metropolis-Hastings (MH) algorithm. Proper prior distributions can be specified
that can be used both to incorporate a set of identifying restrictions for the model
and to reflect the researcher’s ideas about the parameter values and uncertainties.
The estimation method can also handle incomplete designs with data missing at
random.

A model-specific implementation of the Bayes factor (Kass & Raftery, 1995)
and the deviance information criterion (DIC) (Spiegelhalter, Best, Carlin, & Linde,
2002) is given, which can be used (i) to test specific assumptions about the distri-
bution of speed and accuracy in a population of test takers and (ii) to iteratively
build a structural multivariate multilevel component for the latent person parame-
ters with fixed and random effects. Both statistics can be computed as by-products
of the proposed Gibbs sampler. The DIC requires an analytic expression of the
deviance associated with the likelihood of interest. Such an expression is offered
for the multivariate multilevel model given the complete data, which includes aug-
mented continuous data given the binary responses (Albert, 1992), integrating out
both random person parameters and other random regression effects at the level
of groups of respondents. The posterior expectation of this complete DIC is taken
over the augmented data using the output from the MCMC algorithm. Properties
of the DIC, as well as the Bayes factor, were analyzed in a study with simulated
data.

In the next sections, we describe the entire model, specify the prior distribu-
tions, discuss the Gibbs sampler, and show how to apply the Bayes factor and the
DIC to the current model. Then, in a simulation study, the performance of the
Gibbs sampler is addressed, whereby our interest is particularly in estimating the
parameters in the structural component of the model. In a second simulation study,
the relationships between the person parameters and the tests of multivariate hy-
potheses using the Bayes factor and the DIC are explored. Finally, the results from
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real-data examples are given and a few suggestions for extensions of the model are
presented.

2.2 A Multivariate Multilevel Model

Various sources contribute to the variation between responses and RTs on test
items. The total variation can be partitioned into variation due to (i) the sampling
of persons and items, (ii) the nesting of responses within persons and items, and
(iii) the nesting of persons within groups.

Two measurement models describe the distributions of the binary responses and
continuous RTs at level 1 of the framework. At level 2, two correlation structures
are posited to allow for the dependencies between the level 1 model parameters.
First, the person parameters for ability and speed, denoted as θ and ζ, respectively,
are modeled to have a multivariate normal regression on covariates x, while group
differences between these parameters are explained as a function of group-level co-
variates w at a third level. By specifying a higher-level regression structure for
these random person parameters, it becomes possible to partition their total vari-
ance into within-group and between-group components. As a result, we are able to
draw inferences about the person parameters for different groups simultaneously.
Second, a correlation structure for the item parameters in the two measurement
models is specified.

The model can be used for various analyses. First, the analysis might focus on
the item parameters; more specifically, the relationships between the characteristics
of the items in the domain covered by the test. For example, we may want to
know the correlation between the time intensity and difficulty parameters of the
items. Second, the analysis could be about the structural relationships between
explanatory information at the individual and/or group levels and the test takers’
ability and speed. For example, the variance components of the structural model
help us to explore the partitioning of the variance of the speed parameters across
the different levels of analysis. Third, the interest might be in the random effects
in the model, e.g., to identify atypical individuals or groups with respect to their
ability or speed.

Level-1 Measurement Models for the Responses and RTs

The probability of person i = 1, . . . , nj in group j = 1, . . . , J answering item k =
1, . . . ,K correctly (yijk = 1) is assumed to follow the three-parameter normal ogive
model:

P (yijk = 1 | θij , ak, bk, ck) = ck + (1− ck)Φ(akθij − bk), (2.1)

where Φ(.) denotes the normal distribution function, θij the ability parameter of test
taker ij, and ak, bk and ck the discrimination, difficulty and guessing parameters
of item k, respectively.

Typically, as the result of a natural lower bound at zero, RT distributions are
skewed to the right. A family that describes this characteristic well is the log-normal
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distribution (van der Linden, 2006; Schnipke & Scrams, 1997). Let tijk denote the
log-response time of person i in group j on item k. We apply a normal model for
tijk, with a mean depending on the speed at which the person works, denoted as
ζij , and the time intensity of the item, λk. A higher λk represents an item that is
expected to consume more time. On the other hand, a higher ζij means that the
person works faster and a lower RT is expected. A parameter φk is introduced,
which can be interpreted as a time discrimination parameter.

The response-time model at level 1 is given by:

tijk = −φkζij + λk + εζijk
, (2.2)

where εζijk
∼ N(0, τ2

k ). Notice that the interpretation of the model parameters in
(2.2) results in a different location of the minus sign compared to the IRT model.
Also, there is a correspondence of the RT model with IRT models for continuous
responses; for the latter, see, for instance, Mellenbergh (1994) and Shi and Lee
(1998).

Multivariate Two-Level Model for the Person Parameters

The interest is in the relationships between the person parameters and the effects of
potential explanatory variables. For convenience, we use the same set of explanatory
variables for both types of person parameters; the generalization to the case of
different variables is straightforward. Let xj denote a known nj×Q covariate matrix
(with ones in the first column for the intercept) and βj = (β1j ,β2j) a Q×2 matrix of
regression coefficients for group j = 1, ..., J . The coefficients are treated as random
but they can be restricted to be common to all groups, leading to the case of one
fixed effect.

The regression of the two sets of person parameters at the individual level is
defined by:

θij = xt
ijβ1j + eθij

(2.3)

ζij = xt
ijβ2j + eζij

. (2.4)

The two sets of regression equations are allowed to have correlated error terms;
(eθij

, eζij
) is taken to be bivariate normal with zero means and covariance matrix

ΣP :

ΣP =
[

σ2
θ ρ
ρ σ2

ζ

]
. (2.5)

It is straightforward to extend the random effects model to explain variance in
the β’s by group level covariates (Snijders & Bosker, 1999). For instance, test takers
can be grouped according to their social economic background or because they are
nested within different schools. Although different covariates can be included for
the Q intercept and slope parameters, for convenience, it will be assumed that the
same covariate matrix is used for β1 and β2. The covariates for the Q parameters
of group j are contained in a matrix wj of dimension Q×S. That is, in total there
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are S covariates for each group, including the ones for the intercepts. The random
effects β1j and β2j are then modeled as:

β1j = wjγ1 + u1j (2.6)
β2j = wjγ2 + u2j , (2.7)

where γ1 and γ2 are the vectors of regression coefficients of length S. The group-
level error terms, (u1j ,u2j), are assumed to be multivariate normally distributed
with means zero and covariance matrix V. More stable parameter estimates can be
obtained by restricting this covariance matrix to be block-diagonal with diagonal
matrices V1 and V2, each of dimension Q×Q. In this case, the random effects in
the regression of θ on x are allowed to correlate but they are independent of those
in the regression of ζ on x. This choice will be made throughout this chapter. Note
that when (xβ1,xβ2) = (µθ,µζ) = µP , the model as proposed by van der Linden
(2007) is obtained as a special case.

Let θj and ζj denote the vectors of length nj of the person parameters of group
j. The entire structural multivariate multilevel model can now be presented as:

vec
(
θj , ζj

)
=
(
I2 ⊗ xt

j

)
vec
(
βj

)
+ vec

(
eθj , eζj

)
(2.8)

vec
(
βj

)
=
(
I2 ⊗wj

)
vec
(
γ1,γ2

)
+ vec

(
u1j ,u2j

)
, (2.9)

where vec denotes the operation of vectorizing a matrix. We refer to these two mod-
els as level 2 and 3 models, respectively. Marginalizing over the random regression
effects in (2.8) and (2.9), the distribution of vec

(
θj , ζj

)
becomes

vec
(
θj , ζj

)
∼ N

((
I2 ⊗ xjwj

)
γ,
(
I2 ⊗ xj

)
V
(
I2 ⊗ xj

)t + ΣP ⊗ Inj

)
. (2.10)

The structural component of the model allows a simultaneous regression analysis
of all person parameters on explanatory variables at the individual and group levels
while taking into account the dependencies between the individuals within each
group. As a result, among other things, conclusions can be drawn as to the size of
the effects of the explanatory variables on the test takers’ ability and speed as well
as the correlation between these person parameters. Note that hypotheses on these
effects can be tested simultaneously.

Multivariate Model for the Item Parameters

An empirical distribution for the item parameters is specified such that for each
item the vector ξk = (ak, bk, φk, λk) is assumed to follow a multivariate normal
distribution with mean vector µI = (µa, µb, µφ, µλ):

ξk = µI + eI , eI ∼ N(0,ΣI), (2.11)

where ΣI specifies the covariance structure.
The assumption introduces a correlation structure between the item parameters.

For example, it may be expected that easy items require less time to be solved than
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more difficult items. If so, the time intensity parameter correlates positively with
the item difficulty parameter. The guessing parameter of the response model has
no analogous parameter in the RT measurement model (since there is no guessing
aspect for the RTs). Therefore, it does not serve a purpose to include it in this
multivariate model and an independent prior for this parameter is specified below.

2.3 Exploring the Multivariate Normal Structure

The observed response data are augmented using a procedure that facilitates the
statistical inferences. Besides, as will be shown in the next section, these augmen-
tation steps allow for a fully Gibbs sampling approach for estimation of the model.

First, an augmentation step is introduced according to Beguin and Glas (2001).
A variable sijk = 1 when a person ij knows the correct answer to question k and
is sijk = 0 otherwise. Its conditional probabilities are given by:

P (sijk = 1|yijk = 1, θij , ak, bk, ck) =
Φ(akθij − bk)

Φ(akθij − bk) + ck(1− Φ(akθij − bk))

P (sijk = 0|yijk = 1, θij , ak, bk, ck) =
ck(1− Φ(akθij − bk))

Φ(akθij − bk) + ck(1− Φ(akθij − bk))
P (sijk = 1|yijk = 0, θij , ak, bk, ck) = 0
P (sijk = 0|yijk = 0, θij , ak, bk, ck) = 1.

Second, following Albert (1992), continuous latent responses zijk are defined:

zijk = akθij − bk + εθijk
, (2.12)

where the error terms are standard normally distributed and s is taken to be a
matrix of indicator variables for the events of the components of z being positive.
When the guessing parameters are restricted to be zero, it follows immediately that
sijk = yijk with probability one and the 2-parameter IRT model is obtained.

Statistical inferences can be made from the complete data due to the following
factorization:

p
(
y, z, s, t | a,b, c,φ,λ,γ,ΣP ,V

)
= p
(
y | z, s

)
p(s|c)p

(
z, t | a,b,φ,λ,γ,ΣP ,V

)
.

(2.13)
Our interest is in exploring the structural relationships between ability and speed.
Therefore, the term on the far right-hand side of (2.13) will be explored in more de-
tail now. This likelihood can be taken to be that of a normal multivariate multilevel
model,

p
(
z, t | a,b,φ,λ,γ,ΣP ,V

)
=
∫ ∫ ∫

p
(
z | θ,a,b

)
p
(
t | ζ,φ,λ

)
p
(
ζ,θ | β, ΣP

)
×p
(
β | γ,V

)
dθdζdβ. (2.14)
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Therefore, all factors in this decomposition are multivariate normal densities. The
first two factors occur because of the independence of the responses and response
times given the latent person parameters. The last two factors represent levels 2
and 3 of the model.

Inference from this multivariate hierarchical model simplifies when taking ad-
vantage of some of the properties of the multivariate normal distribution. For ex-
ample, let us assume for a moment that the item parameters are fixed and known
and define (z̃ij , t̃ij) = (zij + b, tij − λ). Levels 1 and 2 of the model can then be
represented by the following multivariate hierarchical structure:

θij

ζij

. . . .
z̃ij1

...
z̃ijK

. . . .
t̃ij1
...

t̃ijK


∼ N





xt
ijβ1j

xt
ijβ2j

. . . . . . .
a1θij

...
aKθij

. . . . . . .
−φ1ζij

...
−φKζij


,



σ2
θ ρ σ2

θa
t −ρφt

ρ σ2
ζ ρat −σ2

ζφt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aσ2
θ aρ aσ2

θa
t + IK −aρφt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−φρ −φσ2
ζ −φρat φσ2

ζφt + τ 2




. (2.15)

This representation provides insight in the complex correlational structure hidden
in the data and entails several possible inferences. It also helps us to derive some
of the conditional posterior distributions for the Gibbs sampling algorithm (e.g.,
the conditional posterior distributions of the latent person parameters given the
augmented data). For a general treatment of the derivation of conditional from
multivariate normal distributions, see, for instance, Searle, Casella, and McCulloch
(1992).

Parameter ρ, which controls the covariance between the θs and ζs, plays an
important role in the model. It can be considered to be the bridge between the
separate measurement models for ability and speed. Therefore, its role within the
hierarchical structure will be explored in more detail.

The conditional covariance between the latent response variables and RTs on
items k = 1, . . . ,K is equal to cov(akθij− bk + εθijk

,−φkζij +λk + εζijk
) = −akρφk,

due to independence between the residuals as well as the residuals and the person
parameters. Since ak and φk are positive, the latent response variables and RTs,
and hence the responses and RTs, correlate negatively when ρ is positive. So, in
spite of conditional independence between the responses and RTs given the person
parameters, their correlation is negative.

The conditional distribution of θij given ζij is normal:

θij | ζij ,βj , σ
2
θ , σ2

ζ , ρ ∼ N
(
xt

ijβ1j + ρσ−2
ζ (ζij − xt

ijβ2j), σ
2
θ − ρ2σ−2

ζ

)
. (2.16)

A greater covariance ρ between the person parameters gives a greater reduction of
the conditional variance of θij given ζij . The expression also shows that the amount
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of information about θij in ζij depends both on the precision of measuring the speed
parameter and its correlation with the ability parameter.

From (2.15), it also follows that the conditional expected value of θij given the
complete data is equal to

E
(
θij | βj , ζij , z̃ij , ΣP ,a,b

)
= xt

ijβ1j + ρσ−2
ζ (ζij − xt

ijβ2j)

+σ2
θa

t(aσ2
θa

t + IK)−1(z̃ij − axt
ijβ1j)

=
(
ata + σ−2

θ|ζ
)−1 (2.17)(

atz̃ij + σ−2
θ|ζ
(
xt

ijβ1j + ρσ−2
ζ

(
ζij − xt

ijβ2j

)))
.

The conditional expected value of θij consists of two parts: one part representing
the information about θij in the (augmented) response data and another the in-
formation through the multivariate regression on xij . For ρ = 0, (2.17) reduces to

E
(
θij | β1j , z̃ij , σ

2
θ ,a,b

)
=
(
ata + σ−2

θ

)−1(
atz̃ij + σ−2

θ xt
ijβ1j

)
. (2.18)

This expression can be recognized as the precision-weighted mean of the predictions
of θij from the (augmented) response data and from the linear regression of θ on x
(see, for instance, Fox & Glas, 2001). Comparing (2.18) with (2.17), it can be seen
that when ρ > 0, the expected value of θij increases for test takers who work at a
greater than average speed; that is, a test taker’s ability is predicted to be higher
when the same response pattern is obtained at a higher speed (i.e., in a shorter
expected time on the same set of items).

In (2.15), in addition to the responses and RTs, the random test takers were the
only extra source of heterogeneity. But another level of heterogeneity was added
in (2.9), where the test takers were assumed to be nested within groups and the
regression effects were allowed to vary randomly across them. Also, the item pa-
rameters correlate in (2.11). Because of these random effects and correlations, the
marginal covariances between the measurements change.

We conclude this discussion with the following comments:

• In (2.15), a special structure (compound symmetry) for the covariance matrix of
the residuals at the level of individuals was shown to exist. This structure may
lead to more efficient inference. For a general discussion of possible parameteri-
zations and estimation methods for multivariate random effects structures, see,
for instance, Harville (1977), Rabe-Hesketh and Skrondal (2001) and Reinsel
(1983).

• Linear multivariate three-level structures for continuous responses are discussed,
among others, in Goldstein (2003), and Snijders and Bosker (1999). As already
indicated, the covariance structure of the level-3 random regression effects is
assumed to be block diagonal. This means that the parameters in the regression
of θ on x are conditionally independent of those in the regression of ζ on x. It
is possible to allow these parameters to correlate but this option is unattrac-
tive when the dimension of the covariance matrix becomes large. Typically, the
covariance matrix is then poorly estimated (Laird & Ware, 1982).
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• For the same reason, the covariance matrix of the fixed effects in (2.9) is assumed
to be block diagonal. The Bayesian approach in the next sections allows us to
specify different levels of prior information about this matrix.

2.4 Bayesian Estimation using Gibbs Sampling

In Bayesian statistics, inferences are made from the posterior distribution of the
model parameters. Markov chain Monte Carlo (MCMC) methods enable us to sim-
ulate random draws from this distribution. Summary statistics can then be used
to estimate the parameters or functionals of interest. A useful feature of MCMC
methods is that they remain straightforward and easy to implement when the com-
plexity of the model increases. Also, they allow for the simultaneous estimation of
all model parameters. Since the current model is quite complex and has many pa-
rameters, we need these advantages to estimate the model. For general introduction
to Gibbs sampling, see Gelman, Carlin, Stern, and Rubin (2004) and Gelfand and
Smith (1990). MCMC methods for IRT models are discussed by Albert (1992) and
Patz and Junker (1999).

A new Gibbs sampling scheme was developed to deal with the extension of
the model. Further, the scheme differs from that in van der Linden (2007) by its
increased efficiency; it samples both types of person parameters in one step, taking
into account the identifying restrictions, and avoids an MH step in the sampling of
the item parameters due to better capitalization on the regression structure of the
model. The full conditional distributions of all model parameters for the scheme
are given in the appendix.

The remainder of this section discusses the priors and identifying restrictions
we use.

2.4.1 Prior Distributions

The parameter ck is the success probability in the Binomial distribution for the
number of correct guesses on item k. A Beta prior with parameters B(b′1, b

′
2) is

chosen, which is the conjugate for the Binomial likelihood and thus leads to a Beta
posterior.

For the residual variance τ2
k a conjugate inverse Gamma prior is assumed with

parameters g1 and g2.
A normal inverse-Wishart prior is chosen for the mean vector µI and covari-

ance matrix ΣI of the item parameters. The family of priors is conjugate for the
multivariate normal distribution (Gelman et al., 2004). Thus,

ΣI ∼ Inverse−Wishart(Σ−1
I0

, νI0) (2.19)

µI | ΣI ∼ N
(
µI0,ΣI/κI0

)
. (2.20)

A vague proper prior follows if νI0 is set equal to the minimum value for the degrees-
of-freedom parameter and a diagonal variance matrix with large values is chosen.
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Likewise, a normal inverse-Wishart prior is chosen for the fixed parameters γ
of the multivariate random-effects structure of the person parameters in (2.9),

γ | V ∼ N(γ0,V /κV0). (2.21)

The covariance matrix V of the level-3 random group effects (u1j ,u2j) is as-
sumed to also have an inverse-Wishart prior with scale matrix V0 and degrees of
freedom νV 0.

The prior for the covariance matrix of the person parameters, ΣP , is chosen to
give special treatment because the model is not yet identified.

Prior for ΣP with Identifying Restrictions

The model can be identified by fixing the scales of the two latent person parameters.
A straightforward way of fixing the scale of the ability parameter is to set the mean
equal to zero and the variance to one. To avoid a tradeoff between φ and ζ the
time discrimination parameters are restricted to

∏K
k=1 φk = 1. When these are

restricted to φ = 1 the lognormal RT model as proposed by van der Linden (2006)
is obtained. Then, for the speed parameter, since RTs have a natural unit, we only
have to fix the origin of its scale and set it equal to its population mean. Note
that a multivariate probit model is identified by fixing the diagonal elements of the
covariance matrix (Chib & Greenberg, 1998) but that, because of the special nature
of the RTs, in the current case only one element of ΣP has to be fixed.

Generally, two issues arise when restricting a covariance structure. First, defining
proper priors for a restricted covariance matrix is rather difficult. For example, for
the conjugate inverse-Wishart prior, there is no choice of parameter values that
reflects a restriction on the variance of the ability parameter such as that above.
For the multinomial probit model, McCulloch and Rossi (1994) tackled this problem
by specifying proper diffuse priors for the unidentified parameters and reporting the
marginal posterior distributions of the identified parameters. However, it is hard to
specify prior beliefs about unidentified parameters. Second, for a Gibbs sampler,
sampling from a restricted covariance matrix requires extra attention. Chib and
Greenberg (1998) defined individual priors on the free covariance parameters but,
as a result, the augmented data had to be sampled from a special truncated region
and the values of the free covariance parameter could only be sampled using an MH
step. However, such steps involve the specification of an effective proposal density
with tuning parameters that can only be fixed through a cumbersome process. A
general approach for sampling from a restricted covariance matrix can be found in
Browne (2006), but this is also based on an MH algorithm.

Here, a different approach is taken that allows us to specify proper informative
priors and facilitate the implementation of the Gibbs sampler. A prior is chosen
such that σ2

θ = 1 with probability one. Hence, covariance matrix ΣP always equals:

ΣP =
[

1 ρ
ρ σ2

ζ

]
. (2.22)
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Using (2.8) and (2.22), the conditional distribution of ζij given θij has density

ζij | θij ,βj , ρ, σ2
ζ ∼ N

(
xt

ijβ2j + ρ(θij − xt
ijβ1j), σ̃

2
ζ

)
where σ̃2

ζ = σ2
ζ −ρ2. Parameter ρ can be viewed as the slope parameter in a normal

regression problem of ζij on θij with variance σ̃2
ζ . Specifying a normal and inverse

gamma as conjugate priors for these parameters,

ρ ∼ N(ρ0, σ
2
ρ), (2.23)

σ̃−2
ζ ∼ Gamma(g1, g2), (2.24)

their full conditional posterior distributions become

ρ | θ, ζ,β, ρ0, σ
2
ρ ∼ N

(
∆
(
ρ0σ

−2
ρ +

(
θ − xβ1

)t
σ̃−2

ζ

(
ζ − xβ2

))
,∆
)

(2.25)

σ̃−2
ζ | θ, ζ,β, ρ ∼ Gamma

(
g1 + N/2, g2 + ΞtΞ/2

)
, (2.26)

where ∆ =
((

θ−xβ1

)t
σ̃−2

ζ

(
θ−xβ1

)
+ σ−2

ρ

)−1

and Ξ =
(
ζ −xβ2

)
− ρ
(
θ−xβ1

)
.

Since |ΣP | = σ2
ζ−ρ2 = σ̃2

ζ and σ̃2
ζ > 0, it follows that the determinant |ΣP | > 0.

The latter is sufficient to guarantee matrix ΣP to be positive semi-definite.
When implementing a Gibbs sampler, the random draws of the elements of co-

variance matrix ΣP in (2.22) can be constructed from the samples drawn from
(2.25)–(2.26). These draws will show greater autocorrelation due to this new
parametrization. This implies that more MCMC iterations are needed to cover
the support of the posterior distribution adequately, a measure that only involves
a (linear) increase in the running time of the sampler. On the other hand, conver-
gence of the algorithm is easily established without having to specify any tuning
parameter. Finally, this procedure also enables straightforward implementation of
the data augmentation procedure since the zs can be drawn from a normal distri-
bution truncated at zero, where s indicates when z is positive.

The key element of the present approach is the specification of a proper prior
distribution for the covariance matrix with one fixed diagonal element and the
construction of random draws from the matrix from the corresponding conditional
posterior distribution. For the multinomial probit model, the approach was also
followed by McCulloch, Polson, and Rossi (2000). For completeness, we also mention
an alternative approach. Barnard, McCullogh, and Meng (2000) formulated a prior
directly for the identified parameters. In order to do so, they factored the covariance
matrix into a diagonal matrix with standard deviations and a correlation matrix,
and specified an informative prior for the latter. This prior was then incorporated
into a Griddy-Gibbs sampler. However, such algorithms can be slow and require
the choices of a grid size and boundaries. Boscardin and Zhang (2004) followed a
comparable approach but used a parameter-extended MH algorithm for sampling
values from the conditional distribution of the correlation matrix.
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2.5 Model Selection Methods

A model comparison method is often based on a measure of fit and some penalty
function based on the number of free parameters for the complexity of the model.
A bias-variance trade-off exists between these two quantities since a more complex
model often leads to less bias but a less complex model involves more accurate
estimation. Two well-known criteria of model selection based on a deviance fit
measure are the Bayesian information criterion (BIC) (Schwarz, 1978) and Akaike’s
information criterion (AIC) (Akaike, 1973). These criteria depend on the effective
number of parameters in the model as a measure of model complexity. A drawback
of these measures is that they are often difficult to calculate for hierarchical models:
Although the nominal number of parameters follows directly from the likelihood,
the prior distribution imposes additional restrictions on the parameter space and
reduces its effective dimension. In a random-effects model, the effective number of
parameters depends strongly on the higher-level variance parameters. When the
variance of the random effects approaches zero, all random effects are equal and
the model reduces to a simple linear model with one mean parameter. But when
the variance goes to infinity, the number of free parameters approaches the number
of random effects.

Spiegelhalter et al. (2002) proposed the deviance information criterion (DIC) for
model comparison when the number of parameters is not clearly defined. The DIC
is defined as the sum of a deviance measure and a penalty term for the effective
number of parameters based on a measure of model complexity described below.

An alternative method for model selection that can handle complex hierarchical
models is the Bayes factor; for a review, see Kass and Raftery (1995). The Bayes
factor is based on a comparison of marginal likelihoods but its implementation is
hampered by its critical dependence on the prior densities assigned to the model
parameters. It is known that the Bayes factor tends to favor models with reasonably
vague proper priors; see, for instance, Berger and Delampady (1987) and Sinharay
and Stern (2002). An advantage of the Bayes factor is its clear interpretation as
the change in the odds in favor of the model when moving from the prior to the
posterior distribution (Lavine & Schervish, 1999).

In one of the empirical examples below, the focus is on the structural mul-
tivariate model for the person parameters. It will be shown that a DIC can be
formulated for choosing between models that differ in the fixed and/or random
part of the structural model. In addition, a Bayes factor for selecting between the
IRT measurement model for binary responses and the model extended with the
hierarchical structure for responses and RTs is presented.

2.5.1 Model Selection using the DIC

The DIC requires a closed-form likelihood. Our interest is focused on the likelihood
of the structural parameters in the model; accordingly, all random effect parameters
can be integrated out. Besides, the variances, covariances, and items parameters are
considered as nuisance parameters, and their values are assumed to be known. So,
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a DIC will be derived for the complete-data likelihood with the random effects
integrated out. Subsequently, the posterior expectation of the DIC over the aug-
mented data will be taken. The same procedure was proposed for mixture models
by DeIorio and Robert (2002).

Let z∗ij = vec(zij + b, tij − λ) and HP = (a ⊕ −φ). From (2.15), Conditional
on s, the measurement models for ability and speed can be summarized as

z∗ij = HP Ωij + eij , (2.27)

where eij ∼ N(0,C), with C = (IK⊕IKτ 2) a diagonal matrix with in the left upper
square 1 and in the right lower square τ on its diagonal, and Ωij =vec

(
θij , ζij

)
. The

focus is on the structure of Ω. Using the factorization in (2.13), the standardized
deviance is

D(Ω) =
∑
ij

(
z∗ij −HP Ωij

)t
C−1

(
z∗ij −HP Ωij

)
. (2.28)

The DIC is defined as

DIC =
∫ [

DIC | z
]
p(z|y)dz (2.29)

=
∫ [

D(Ω̄) + 2pD

]
p(z | y)dz (2.30)

= Ez

[
D(Ω̄) + 2pD | y

]
(2.31)

where Ω̄ equals the posterior mean and pD is the effective number of parameters
given the augmented data. The latter can be shown to be equal to the mean deviance
minus the deviance of the mean. Hence,
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pD = D(Ω)−D(Ω̄) (2.32)
= EΩ

[
D(Ω) | z∗

]
−D(E(Ω | z∗))

= EΩ

[∑
ij

(
z∗ij −HP Ωij

)t
C−1

(
z∗ij −HP Ωij

)]
−D(E(Ω | z∗))

= tr
[∑

ij

EΩ

(
z∗ij −HP Ωij

)(
z∗ij −HP Ωij

)t
C−1

]
−tr

[∑
ij

(
z∗ij −HP E(Ω | z∗)

)(
z∗ij −HP E(Ω | z∗)

)t
C−1

]
(2.33)

=
∑
ij

tr
[
EΩ

(
z∗ij −HP Ωij

)(
z∗ij −HP Ωij

)t
C−1

−
(
z∗ij −HP E(Ω | z∗)

)(
z∗ij −HP E(Ω | z∗)

)t
C−1

]
(2.34)

=
∑
ij

tr
[
C−1 var(eij | z∗ij)

]
(2.35)

=
∑
ij

tr
[
C−1[var(eij)− cov(eij , z∗ij)var(z∗ij)

−1cov(eij , z∗ij)]
]

(2.36)

=
∑
ij

tr
[
var(z∗ij)

−1var
(
HP Ωij

)]
(2.37)

=
∑
ij

tr
[(

HP xijwjΣγwt
jx

t
ijH

t
P + HP xijV xt

ijH
t
P + HP ΣP Ht

P + C
)−1

(
HP xijwjΣγwt

jx
t
ijH

t
P + HP xijV xt

ijH
t
P + HP ΣP Ht

P

)]
, (2.38)

where tr(·) denotes the trace function, i.e., the sum of the diagonal elements. The
expectation is taken with respect to the posterior distribution of Ω. The terms in
(2.35) can be recognized as the posterior variances of the residuals whereas those in
(2.37) follow from the fact that, because of independence, the variance of z∗ij equals
the sum of the variance of HP Ωij and eij .

DICs of nested models are computed by restricting one or more variance param-
eters in (2.38) to zero. Also, (2.38) can be estimated as a by-product of the MCMC
algorithm; that is, the output of the algorithm can be used to estimate the posterior
means of the model parameters in the second term of (2.32) and to integrate the
DIC over the item parameters to obtain the first term. (In the current application,
the item parameters are the nuisance parameters.)

Usually the variance parameters are unknown. Then the DIC has to be inte-
grated over their marginal distribution, too. In fact, the correct Bayesian approach
would be to integrate the joint posterior over the nuisance parameters to obtain
the marginal posterior of interest. However, this approach is not possible since no
closed-form expression of the DIC can be obtained for this marginal posterior. Thus,
our proposal does not account for the unknown variances. (2.38) reflects the effec-
tive number of parameters of the proposed model without the additional variability
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in the posterior because of the unknown covariance parameters. The more general
case with unknown covariance parameters is complex, and no simple correction
seems available. But Vaida and Blanchard (2005) showed that, for a mixed-effects
model, the correction for unknown covariance parameters is negligible asymptoti-
cally. So, it seems safe to assume that their effect on the estimate of (2.32) becomes
only apparent when the covariance parameters are estimated less precisely.

2.5.2 Model Selection using the Bayes factor

The question we address is if the use of the RTs in the hierarchical model proves to
be beneficial for making inferences about the ability parameter. As no benefits can
be obtained when the correlation r(θ, ζ) = % = 0 (i.e., independence between θ and
ζ), a Bayes factor is defined to test whether the data support fitting a model M1

between θ and ζ or the null model M0 ⊂ M1 with independence. For an introduction
to Bayes factors, see Berger and Delampady (1987); Kass and Raftery (1995).

Both models are given equal prior weight. Therefore, the Bayes factor can be
presented as

BF =
p(y, t | M0)
p(y, t | M1)

(2.39)

=
∫

p(y | z)p(z, t | M0)dz∫
p(y | z)p(z, t | M1)dz

(2.40)

=
∫

p(y | z)p(z, t | % = 0)dz∫ ∫
p(y | z)p(z, t | %)π(%)d%dz

. (2.41)

A popular family of conjugate priors for the correlation coefficient has the form
(1 − %2)ν on its support, 0 ≤ % ≤ 1 (P. M. Lee, 2004). For ν = 0, a uniform
distribution is obtained. For ν = 5, a half-normal distribution is approximated. For
ν →∞, the prior assigns probability 1 to % = 0, which yields model M0. To assess
the sensitivity of the Bayes factor to the specification of the prior density, a variety
of members from the family can be chosen.

2.6 Simulation Study

In the first study, different data sets were simulated and the parameters were re-
estimated to check the performance of the Gibbs sampler. In the second study, the
properties of the proposed Bayes factor in (2.41) were investigated for data sets
generated for different values of % and different choices of prior distributions. We
also checked the rejection region for the null hypothesis. In the third study, the
characteristics of the proposed DIC test were analyzed.

2.6.1 Parameter Recovery

Datasets were simulated for the following structural component of the model:



2.6 Simulation Study 25(
θij

ζij

)
=

(
γ00 + u

(θ)
0j

γ10 + u
(ζ)
1j

)
+

xij

(
wjγ01 + u

(θ)
1j

)
xij

(
wjγ11 + u

(ζ)
2j

)+
(

e1ij

e2ij

)
,

where eij ∼ N(0, ΣP ), u(θ) ∼ N(0,V1) and u(ζ) ∼ N(0,V2). The model had
the same set of explanatory variables in the regression of each latent parameter
and had random intercepts and slopes. The intercepts and slopes were taken to be
independent of the residuals and across the person parameters. The true values of
the structural parameters used in the study are given in Table 2.1. The values of the
explanatory variables x and w were drawn from a standard normal distribution. For
the responses, the 2PL model was assumed and the item parameters were drawn
from a multivariate normal distribution with mean µI = (1, 0, 1, 0) and a diagonal
covariance matrix ΣI with all variances equal to .5. Negative values of φ and a
were simply ignored. Responses and RTs were simulated for N = 1, 000 persons
nested in 50 groups each taking 20 items.

In the estimation procedure, the following hyperparameters were used: Scale
matrices ΣI0 and Σγ0 were chosen to be diagonal with elements .01 to indicate
vague proper prior information, and we set µI0 = (1, 0, 1, 0) and γ0 = 0. Besides,
a vague normal prior with parameters µρ = 0 and σ2

ρ = 10 was specified for ρ.
The MCMC procedure was iterated 50, 000 times and the first 5, 000 iterations

were discarded when the means and posterior standard deviations of the parameters
were estimated.

The accuracy of the parameter estimates was investigated by comparing them
to their true values. The results for the parameters in the structural model are given
in Table 1. Both the estimates of the fixed parameters and the variance components
are in close agreement with the true values. (Note that γ00 and γ10 are zero due to
the identifying restrictions.) Although not shown here, the same close agreement
was observed for the item parameter estimates.

2.6.2 Sensitivity of the Bayes Factor

Usually, we will have little prior information about the correlation of the person
parameters. Therefore, it is important to know how the Bayes factor behaves for a
relatively vague prior distribution of the correlation % = ρ2/

√
σ2

θσ2
ζ . In total, 500

data sets were simulated for different values of % ∈ [0, 1] and an empty structural
model for the person parameters. All other specifications were identical to those in
the preceding study. The Bayes factor in (2.41) was calculated using an importance
sampling method (Newton & Raftery, 1994). For each data set, the calculations
were repeated for different priors for the correlation parameter.

Following Lee (2004), a reference prior for % was used, which led to

BF (ν) =
∫

p(y|z)p(z, t | % = 0)dz∫ ∫
p(y|z)p(z, t | %)C

(
1− %2

)ν
d%dz

, (2.42)
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Table 2.1. Simulated and estimated values of the structural parameters.

Fixed parameters True value EAP SD

γ00 0.00 0.00 -
γ01 4.00 3.77 0.23
γ10 0.00 0.00 -
γ11 3.00 2.99 0.12

Variance components True value EAP SD

ΣP

Σ11 1.00 1.00 -
Σ12 0.50 0.55 0.04
Σ22 1.00 1.07 0.06

V1

V11 1.00 1.00 0.25
V12 0.50 0.48 0.22
V22 1.00 1.13 0.35

V2

V11 1.00 1.07 0.23
V12 0.50 0.47 0.17
V22 1.00 0.86 0.19

with C the normalizing constant. According to Jefreys’ scheme (Kass & Raftery,
1995), 1/BF (ν) > 3 implies evidence against the null hypothesis of % = 0 given the
value of ν.

The results are shown in Figure 2.1, where the dotted line indicates log(BF ) = 0.
For true values of % close to zero or larger than .35, the Bayes factor yielded the
same conclusion for all chosen priors. More specifically, it favored the null model
for all values of % below .1 but the alternative model for all values larger than .35.
It can also be seen that the estimated Bayes factors are higher (and thus favor
the null model more frequently) for lower values of ν, which correspond to the
less informative priors. For % ∈ [.20, .35], the prior distribution of % was the major
determinant of the Bayes factor favoring the null or the alternative model.

It can be concluded that the Bayes factor is sensitive to the prior choice for %.
Figure 2.1 gives a clear idea about the variation of the Bayes factor for a class of
prior distributions. This information can be used in real-world applications when a
prior for % needs to be selected but the information about this parameter is poor.

2.6.3 Iterative Model Building using the DIC

In this study, it was investigated whether the DIC can be used to choose between
models with different fixed and/or random terms in the structural component of
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Fig. 2.1. Log(BF) as a function of the correlation between accuracy and speed for 3
different priors for %.

the model for the person parameters. Data were simulated for 1,000 persons nested
in 20 groups each taking 20 items using a model that is explained below. The setup
was the same as in the earlier parameter recovery study; the only difference was
that wj was set equal to one for all j.

Table 2.2 summarizes the calculations of the DIC for four different models. D̄
is the estimated posterior mean deviance; D(Ω̂) is the deviance for the posterior
mean of the parameter values.

Table 2.2. Deviance summaries for the four models in the simulation study.

Model D̄ D(Ω̂) pD DIC

1,Two-Level, fixed parameters 40168 38184 1984 42152
2,Empty Two-level 40161 38194 1967 42129
3,Two-level + Ω | x 40172 38206 1966 42139
4,Three-level + Ω | x 40165 38290 1875 42039

Model 1 was an empty two-level model with fixed parameters for θ and ζ, which
was obtained by setting ρ to 0 and the variances of each person parameters equal to
1, 000. Model 2 was an empty two-level model that ignored any group structure for
the test takers. In Model 3, the two-level structure was extended with a covariate
of ζ and θ but no group structure was assumed. Model 4 was the true model under
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which the data were simulated; this model did have both the covariate and the
group structure for the test takers. Identification of the models was obtained via
the restriction

∏K
k=1 ak = 1 on the item parameters. This choice is motivated as

follows: In Model 4, the variability of the person parameters is explained by V and
the covariates. When estimating Model 1, 2 or 3 from the data simulated under
Model 4, this variability should be captured by ΣP as extra residual variation.
Therefore, ΣP was left unrestricted; otherwise, the variance would have been traded
with the estimated a parameters, which might have led to misinterpretation of the
results.

As expected, the DIC values we found suggested that Model 4 was best per-
forming. Particularly, it can be seen that when the grouping of the test takers was
ignored, this led to an increase in the effective number of parameters. Note that
the optimal model choice is not necessarily the best fitting model, but a tradeoff
between model fit and the number of parameters used.

2.7 Empirical Examples

In this section, two empirical examples illustrate the use of several developments
that were presented in this chapter.

2.7.1 First Example

A data set of 286 persons who had taken a computerized version of a 22-item per-
sonality questionnaire was analyzed. The respondents were Psychology and Social
Sciences undergraduates from a university in Spain. The majority of the students
was between 18 and 30 years old (age variable), and this group consisted of 215
girls and 71 boys (gender variable). The questionnaire consisted of two scales of
11 dichotomous items measuring neuroticism and extraversion. The neuroticism
dimension assesses whether a person is prone to experience unpleasant emotions
and is emotionally unstable and the extraversion dimension measures sociability,
enthusiasm and arousal of pleasure. According to the five factor model, these two
dimensions summarize part of the covariation among personality traits.

As already indicated, because it does not assume anything about the relation-
ship between the speed at which the individual test takers work and the latent
trait represented in the response model, the modeling framework can also be ap-
plied to personality questionnaires. For this domain, it is also interesting to study
the responses and RTs simultaneously. In addition to the statistical advantages of
multivariate modeling of the data over separate univariate modeling, such a study
would allow us to infer, for instance, how differences in speed levels between sub-
groups of test takers correlate with differences in their personality traits.

From earlier results it was known that there is a moderate negative dependency
between neuroticism and extraversion (Becker, 1999; McCrea & Costa, 1997). Here,
interest was focused on the differences between students with respect to these two
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personality dimensions given age and gender. Additionally, variation in the respon-
dent’s speed-levels with respect to neuroticism and extraversion was explored. This
part of the study involved the estimation of the covariances between the personality
traits and the latent speed-levels.

Since this test consisted of yes - no personality questions, the 2PL model was
chosen as the measurement model for the responses. For the RTs, the measurement
part was specified by (2.2). The following structural part was specified to explore
the variation in speed and the traits as a function of both background variables:(

θi

ζi

)
=
(

γ00

γ10

)
+
(

γ01Malei + γ02Agei

γ11Malei + γ12Agei

)
+
(

e1i

e2i

)
, (2.43)

where e ∼ N(0,ΣP ). Further, γ00 and γ10 denote the intercepts, γ01 and γ11

represent the effects of being male, and γ02 and γ12 represent the effects of age.
The age vector contained the age of the test takers on a continuous scale.

Four models were fitted to the data: (1) null model without covariates, (2) and
(3) structural multivariate model with age and gender as a covariate, respectively,
and (4) full structural multivariate model with both age and gender as covariates.
For estimation, proper noninformative priors were specified, with all prior variance
components set at 100 and the covariances at 0. The MCMC algorithm was iterated
50,000 times; the first 10,000 iterations were discarded as the burn-in period.

Posterior predictive checks were used to evaluate several assumptions of the
model. An important assumption of the model is that of local independence. There-
fore, an odds ratio statistic was used to test for possible dependencies between re-
sponse patterns of items. For an impression of overall fit of the response model,
an observed score statistic was estimated to assess if the model was able to repli-
cate the observed score patterns. For a detailed description of these two statistics,
see Sinharay (2005) and Sinharay, Johnson, and Stern (2006). To assess the fit
of the RT model van der Linden and Guo (in press) proposed a Bayesian resid-
ual analysis. That is, by evaluating the actual observation tik under the posterior
density, the probability of observing a value smaller than tik can be approximated
by p ≈

∑M
m=1 Φ

(
tik|ζ(m)

i , φ
(m)
k , λ

(m)
k

)
/M , from M iterations from the MCMC

chain. According to the probability integral transform theorem, under a good fit-
ting model, these probabilities should be distributed U(0, 1). Model fit can then be
checked graphically by plotting the posterior p-values against their expected values
under the U(0, 1) distribution.

The posterior checks of the model were based on 1000 replicated data sets from
the posterior distribution. The fitted IRT model replicated the responses well, as
the observed sum score statistic did not point at any significant flaws for neither of
the two scales. The odds ratio statistic indicated that, for two item combinations
on the neuroticism scale and for four item combinations on the extraversion scale,
a violation of local independence might exist. However, given all possible item
combinations, these possible violations of local independence did not give any reason
to doubt the unidimensionality of the scales. As indicated by minor deviations in
the lower tail and in the middle of the U(0, 1) distributions, the RT model tended



30 2 Modeling of Accuracy and Speed of Test Takers

to slightly underpredict the quicker responses (see Figure 2.3 in the Appendix).
Overall, however, model fit was satisfactory.

Table 2.3. DIC values for 4 models fitted to the neuroticism and extraversion scales.

Neuroticism Extraversion

Model pD D(Ω̂) DIC pD D(Ω̂) DIC

1 (null) 572 3839 4983 572 3767 4911
2 (gender) 572 3846 4990 572 3774 4918
3 (age) 572 3941 5085 572 3838 4982
4 (full) 572 3943 5087 572 3827 4971

Table 2.3 gives the calculated DIC values for the four models and the two scales.
Comparing the results for model (1) and model (3), the DIC criterium yielded no
significant difference in performance between boys and girls on both scales. That is,
for the neuroticism as well as the extraversion scale, no mean significant difference
between boys and girls was found, neither in the latent personality traits, nor in
the speed of working on the test. Neither did the age of the test takers explain any
significant amount of variation in the personality traits and speed levels.

Next, the respondents were clustered with respect to their estimated extraver-
sion scores. The clustering was such that the intervals of respondents’ scores in each
cluster had equal probability mass under a normal model for the population distri-
bution. The sample size of 286 respondents allowed a grouping of respondents in
eight different clusters of extraversion levels. Note that the clusters were obtained
from an estimated population model, and that they jointly represented the entire
score range.

It was investigated whether the grouping of respondents with respect to the
extraversion scores explained any variation in respondents’ neuroticism scores. Fur-
ther, the influence of the background variables was explored. The following multi-
variate random effects structural model was specified:(

θi

ζi

)
=

(
γ00 + u

(θ)
0j

γ10 + u
(ζ)
1j

)
+

Maleij

(
γ01 + u

(θ)
01j

)
+ Ageij

(
γ02 + u

(θ)
02j

)
Maleij

(
γ11 + u

(ζ)
11j

)
+ Ageij

(
γ12 + u

(ζ)
12j

)+
(

e1ij

e2ij

)
,

(2.44)
where eij ∼ N(0, ΣP ), u(θ) ∼ N(0,V1) and u(ζ) ∼ N(0,V2). In (2.44), the in-
tercepts and slope coefficients for the regression on the neuroticism scores and the
speed levels were treated as random across clusters of extraversion levels. These
random effects were allowed to correlate both within the regression on the neuroti-
cism scores and within the regression on the speed levels. Also, the error terms at
the individual level were allowed to correlate since the speed levels and neuroticism
scores were clustered within individuals.

Five models were fitted to the neuroticism scale by restricting one or more
parameters to zero: (1) the null model with fixed intercepts by restricting V1 and
V2 to be zero; (2) the empty multivariate random effects model (without covariates)
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with free covariance parameters; (3) - (4) a multivariate random effects model
including a random regression effect for gender and age, respectively and (5) the
full model as specified in (2.44).

Using the proper noninformative priors described earlier, the models were esti-
mated using 50,000 iterations of the Gibbs sampler, where 10,000 iterations were
discarded because of the burn-in. The DIC value for each of the five models was
estimated using (2.31) since our interest was focused primarily on the structural
model on the speed levels and neuroticism scores. The estimated DIC values are
given in Table 2.4.

Table 2.4. DIC values for five models fitted to the neuroticism scale, accounting for a
grouping of respondents in extraversion levels.

Model pD D(Ω̂) DIC

1 (null) 572 3839 4983
2 (empty) 521 3858 4899
3 (gender) 536 3866 4938
4 (age) 572 3860 5004
5 (full) 572 3873 5017

It can be seen that the empty multivariate random-effects model had a smaller
effective number of model parameters relative to the null model and was to be
preferred given the DIC values of both models. The estimated deviance increased
slightly for Models 3 - 5, which can be attributed to additional sampling variance
introduced by the covariates. Note that in the empty multivariate random-effects
model, the individual random-effect parameters were modeled as group-specific ran-
dom effects at the level of the clusters of extraversion scores (a third level in the
model) and that this led to a serious reduction in the effective number of model
parameters. It can be concluded that the grouping of respondents according to their
extraversion levels explained a substantial amount of variation in the speed levels
as well as the neuroticism scores. The estimated correlation between the neuroti-
cism scores and the speed levels was .30 (with a standard deviation of .07), which
justified the multivariate modeling approach. Intraclass correlation coefficients were
calculated to asses the amount of variability in the individual neuroticism scores
and the speed levels due to the grouping of respondents in clusters of extraversion
levels. The intraclass correlation estimates for neuroticism and the speed trait were
based on the MCMC output for the empty multivariate random effects model. The
estimates were

ICCθ ≈
1
M

M∑
m=1

V
(m)
11

V
(m)
11 + σ2

θ
(m)

= .12

ICCζ ≈
1
M

M∑
m=1

V
(m)
22

V
(m)
22 + σ2

ζ
(m)

= .07,
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where m = 1, . . . ,M denotes the number of iterations after burn-in. It follows that
12% of the variability in the neuroticism trait could be explained by the grouping of
the respondents by their extraversion levels. It is surprising that 7% of the variability
in speed levels was located at the group level. This means that the clustering of the
respondents via the estimated extraversion levels explained a significant amount
of variation in the individual speed levels corresponding to the neuroticism test.
The explanation is supported by the estimated correlation between both speed
parameters, which was .76. Note that this relatively high correlation between the
individual speed levels on the two tests also supports the assumption of stationary
speed during testing. Finally, the DIC values show that the covariates did not
explain any variation in the trait or speed levels. It can be seen that the introduction
of random regression parameters for the background variables did not lead to any
reduction in the effective number of parameters since the covariates did not explain
any variation within the grouped neuroticism scores. Neither did they for the entire
sample of neuroticism scores.

2.7.2 Second Example

In this example, the data set studied earlier by Wise, Kong, and Pastor (2007) was
analyzed. This data set included 388 test takers who each answered 65 items of a
computer-based version of the Natural World Assessment Test (NAW-8). This test
is used to assess the quantitative and scientific reasoning proficiencies of college
students. It was part of a required education assessment for mid-year sophomores
by a medium-sized university. Covariates for the test takers such as their SAT
scores, gender (GE), a self-report measure of citizenship (CS) and a self-report
measure of test effort (TE) were available. Citizenship was a measure of a test
taker’s willingness to help the university collecting its assessment data, whereas
test effort reflected the importance of the test to the test taker. The number of
response options for the items varied between 2 and 6.

The 3PL model was chosen as the measurement model for the responses. In the
estimation procedure, the same hyperparameter values as in the simulation study
above were used to specify vague proper prior knowledge. The model was estimated
with 20,000 iterations of the Gibbs sampler, and the first 10,000 iterations were
discarded as the burn-in. The odds ratio statistic indicated that for less than 4 %
of the possible item combinations there was a significant dependency between two
items. The replicated response patterns under the posterior distribution matched
the observed data quite well, as shown by the observed sum score statistic. From the
posterior residual check it followed that the RT model described the data well. The
estimated time discrimination parameters varied over [.25, 1.65], indicating that the
items discriminated substantially between test takers of different speed. This result
was verified by testing the RT model with φ = 1 against the RT model where φ 6= 1
using the DIC. The estimated DIC’s were 85780 and 84831 for the restricted and
for the unrestricted RT model, respectively.

Table 2.5 gives the estimated covariance components and correlations between
the level 1 parameters. The correlation between the person parameters was esti-
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Table 2.5. Estimated covariance components and correlations.

Variance components EAP SD Cor

ΣP

Σ11 1.00 - 1.00
Σ12 −.38 0.02 -.76
Σ22 0.25 0.02 1.00

ΣI

Σ11 0.15 0.04 1.00
Σ12 −.11 0.04 −.53
Σ13 0.05 0.02 0.41
Σ14 0.02 0.04 0.09
Σ22 0.33 0.07 1.00
Σ23 0.06 0.03 0.34
Σ24 0.07 0.05 0.21
Σ33 0.10 0.02 1.00
Σ34 0.10 0.03 0.51
Σ44 0.35 0.06 1.00

mated to be −.76. The Bayes factor for testing the null hypothesis of this corre-
lation being zero, clearly favored the alternative for the range of possible priors
given in the simulation study above. Therefore, for this data set, fitting the hier-
archical model has to be favored over the alternative of independence between the
two constructs. An explanation for this strong negative dependency might be that
higher-ability candidates have more insight in their test behavior and, therefore,
are better at time management. A negative correlation between speed and ability
also often suggests a non-speeded test, because it implies that higher ability test
takers who take their time do not run out of time towards the end of the test.

As shown earlier by van der Linden et al. (2007), response times can be a valuable
tool for diagnosing differential speededness. Thereby, checks on the assumption of
stationary speed during the test are particularly useful. For each test taker, the
standardized residuals eijk = (tijk − (λk − φkζij))/τk were calculated. When the
stationary speed assumption holds, a test taker’s residual pattern shows randomly
varying residuals which almost all will lie between [−2, 2]. However, a test taker
running out of time will show a deviation of this assumption towards the end of the
test. In such a case, this result is misfit of the RT model, because of larger residuals
for the test taker on these last items. In Figure 2.2, residual patterns of the RT
model for 16 test takers are shown. An aberrancy can be seen in the last figure,
where for some items the test taker responded unusually fast. However, a graphical
check of the residual patterns of all the test takers did not reveal any structural
aberrancies. Therefore, there were no indications of speededness for this test.
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Fig. 2.2. Standardized residual patterns for the RT model for 16 selected test takers.

Subsequently, the following structural model on the person parameters was spec-
ified to identify possible relationships of ability and speed with the covariates:

(
θi

ζi

)
=
(

γ00

γ10

)
+
(

SATiγ01 + TEiγ02 + GEiγ03 + CSiγ04

SATiγ11 + TEiγ12 + GEiγ13 + CSiγ14

)
+
(

e1i

e2i

)
, (2.45)

where ei ∼ N(0,ΣP ). Several hypotheses about this model were tested. First, the
composite null hypothesis H01 of both γ01 and γ11 equal zero was tested. Second,
the null hypotheses H02 that γ02 and γ12 equal zero were evaluated and, similarly,
the hypotheses H03 (γ03 and γ13 equal zero) and H04 (γ04 and γ14 equal zero) were
evaluated. Finally, by iterative model building, the composite hypothesis H05 of the
effects γ03, γ04, γ12, γ13 and γ14 equal to zero was tested. Testing these hypotheses
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corresponds to comparing models that differ only in their fixed part. This can be
easily done via a Bayes factor because, by using a result known as the Savage-Dickey
density ratio (Dickey, 1971; Verdinelli & Wasserman, 1995), these Bayes factors are
easy to obtain in reduced computation time.

The hypotheses that gender and citizenship had no effect on ability and speed
were confirmed. Also, the estimated .95 HPD regions of their effects (and their
.90 HPD regions too) included 0, which was another indication that these covari-
ates did not have any explanatory power in speed and ability. However, the SAT
scores and test effort explained a significant amount of variation between the person
parameters. This result implies the following reduced model:(

θi

ζi

)
=
(

γ00

γ10

)
+
(

SATiγ01 + TEiγ02

TEiγ12

)
+
(

e1i

e2i

)
, (2.46)

where ei ∼ N(0,ΣP ). The Bayes Factors for the several nested models and the
final estimates of the regression parameters are given in Table 2.6.

Table 2.6. Estimated Bayes factors and regression parameters for the structural models

Hypothesis log(BF)

H01 −5.0
H02 −21.3
H03 16.4
H04 16.3
H05 16.2

Fixed parameters EAP SD

γ01 .25 .03
γ02 .25 .03
γ12 -.22 .02

Intuitively, a positive relationship of TE with ability should have been expected.
That is, test takers scoring higher on the TE-scale should have been expected to
differ from test takers who care less about their results. Also, when the test is
relatively more important to the candidate, he/she can be expected to try harder
and spend more time on each item to get better results. The negative relationship of
TE with speed is also in agreement with this hypothesis since a lower speed results
in higher expected RTs. As expected, the SAT score shows a positive relationship
with ability. However, there was no significant effect for SAT with respect to the
speed of working of the test takers.

2.8 Discussion

A framework for a multivariate multilevel modeling approach was given in which
the latent response parameters are measured using conjoint IRT models for the
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response and response time data. The IRT models for speed and ability are based
on the assumption of conditional independence. This means that the ability param-
eter (speed parameter) is the assumed underlying construct for the response data
(response time data). As a result, for each individual, at the level of measurements
the responses and response times are local independent given the latent person pa-
rameters. The correlation structure between the person parameters is specified at
a higher level. The correlation between speed and accuracy in the population of
respondents can be tested via a Bayes factor. As the empirical examples showed,
the correlation between ability and speed is not necessarily positive. The sign of
this relationship will probably depend on the type of test and the test conditions.
That is, sometimes hard work will pay off (e.g. a test with strict time limit) while
for another setting ”take your time” might be the best advice. RTs can give insight
about the best strategy of test taking, which is useful information for both test
takers and test developers. Other model selection issues related to the structural
model on the person parameters can be handled via the proposed DIC which can be
computed as a by product of the MCMC algorithm. It was shown that the MCMC
algorithm performed well and enabled simultaneous estimation.

The class of multivariate mixted effect models has not received much attention
in the literature. Schafer and Yucel (2002) developed an MCMC implementation for
the linear multivariate mixed effect model with incomplete data that does converge
rapidly for a small number of large groups but it is limited to two levels of nesting.
Shah, Laird, and Schoenfeld (1997) extended the EM-algorithm of Laird and Ware
(1982) to deal with linear bivariate mixed models. Also, for some applications, it
may be possible to stack the columns of the response matrix and apply standard
software for univariate mixed models (e.g., SAS Proc Mixture; S-Plus Nlme). How-
ever, this approach quickly becomes impossible when the number of individuals
per group and/or the number of variables grows. The MCMC algorithm developed
in this project, which is available in R from the authors upon request, may help
researchers to analyze nonlinear multivariate multilevel mixed response data. This
implementation is not limited to small numbers of variables or responses and can
handle multiple random effects.

The model in this chapter can easily be extended, for example, to deal with
polytomous response data. MCMC algorithms for polytomous IRT models can be
found in Fox (2005); Patz and Junker (1999), and Johnson and Albert (1999),
among others. The necessary adjustment of the MCMC algorithm consists of re-
placing the random draws from the parameters in the three-parameter normal-ogive
IRT model with those in a polytomous model. Although several studies have shown
the log-normal model to yield satisfactory fit to RTs on test items, the hierarchical
framework can be used with other measurement models for RTs, for example, to
deal with RT distributions with a different skewed or that require heavier tails to
be more robust against outliers.

If subpopulations of test takers follow different strategies to solve the items,
differences in the joint distribution of accuracy and speed can be expected. To
model them, a mixture modeling approach with different latent classes for different
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strategies can be used (see, for instance, Rost, 1990). This procedure can also be
used to relate the popularity of different strategies to covariates.

Finally, the relationship between accuracy and speed may differ across groups
of items, for instance, when they are organized in families of cloned items (Glas &
van der Linden, 2003) or are presented with a testlet structure (Bradlow, Wainer, &
Wang, 1999). In order to deal with such cases, the hierarchical framework has to be
extended with a group structure for items. The consequences of this extension and
the extensions above for the MCMC method of estimation and hypothesis testing
still have to be explored.

2.9 Appendix: Gibbs Sampling Scheme

The Gibbs sampler iteratively samples from the full conditional distributions of all
parameters. The full conditional distributions are specified below.

Sampling of Structural Model Parameters.

The sampling of the augmented data is described in (2.12).
As for the person parameters, observe that (2.15) can be written as[

Ωij

z∗ij

]
∼ N

([
xt

ijβj

HP Ωt
ij

]
,

[
ΣP ΣP Ht

P

HP ΣP HP ΣP Ht
P + C

])
, (2.47)

where the matrix notation is the same as in (2.27), with z∗ij = vec(zijk+bk, tijk−λk)
and HP = (a ⊕ −φ). From the fact that (2.47) is multivariate normal, it follows
for the full conditional distribution of the person parameters that

Ωij | z∗ij ,ΣP ,β ∼ N
(
E(Ωij | z∗ij), var(Ωij | z∗ij)

)
, (2.48)

with

E
(
Ωij | z∗ij ,ΣP ,β

)
= xt

ijβj + HP ΣP (HP ΣP Ht
P + C)−1(z∗ij −HP (xt

ijβj)
t),

(2.49)
and

var
(
Ωij | z∗ij ,ΣP ,β

)
= ΣP −ΣP Ht

P

(
HP ΣP Ht

P + C
)−1

HP ΣP (2.50)

This result involves an efficient sampling scheme since the values of both person
parameters are obtained in just one step.

The derivation of the full conditional distribution of regression coefficients β
and γ is analogous. From (2.47) and (2.9), it follows that the βjs are multivariate
normal with mean

E
(
βj | Ωj ,ΣP ,V,γ

)
= wjγ + xjV

(
xjVxt

j + ΣP

)−1(Ωj − xjwjγ), (2.51)

and variance,
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var
(
βj | Ωj ,ΣP , V

)
= V −Vxt

j

(
xjVxt

j + ΣP

)−1
xjV. (2.52)

Likewise, from (2.9) and (2.21), the (fixed) coefficients γ are multivariate normal
distributed with mean

E
(
γ | β,V,V0, κV0 ,γ0

)
= γ0 + wV∗(wV∗wt + V

)−1(
β −wγ0

)
, (2.53)

and variance

var
(
γ | β,V,V0, κV0

)
= V∗ −V∗wt

(
wV∗wt + V

)−1
wV∗, (2.54)

where V∗ = V/κV0 .
The full conditional distribution of covariance matrix ΣP was already intro-

duced in the section on the identifying prior structure.

Sampling of the Remaining Parameters.

As for the item parameters, a regression structure analogous to that of the person
parameters in (2.15) can be found. Let Λk = (ak, bk, φk, λk)t and HI = (θ,−1N )⊕
(−ζ,1N ). The item parameters are the coefficients of the regression of z∗k on HI .
Combined with the prior in (2.11), this observation leads to a multivariate normal
posterior distribution of the item parameters with mean,

E
(
Λk | z∗k,Ω,ΣI

)
= µI + HIΣI

(
HIΣIHt

I + C2K

)−1(
z∗k −HIµI

)
(2.55)

and variance,

var(Λk | z∗k,Ω,ΣI) = ΣI −ΣIHt
I

(
HIΣIHt

I + C2K

)−1
HIΣI , (2.56)

where C2K = IK ⊕ IKτ 2.
The parameters of the distribution of the item parameters follow a multivariate

normal distribution; see (2.11). The normal inverse-Wishart prior in (2.19) and
(2.20) is conjugate for the multivariate normal distribution (Gelman et al., 2004).
The resulting posterior distribution also belongs to the normal inverse-Wishart
family:

p(µI ,ΣI | Λ,µI0
,ΣI0 , κI0 , νI0) ∼ N − Inv −Wishart

(
µ∗,Λ

∗, κ, ν
)

(2.57)

with parameters:

µ∗ =
κI0

κI0 + K
µI0

+
K

κI0 + K
Λ̄,

κ = κI0 + K,

ν = νI0 + K,

Λ∗ = ΣI0 + S +
κI0K

κI0 + K

(
Λ̄− µI0

)(
Λ̄− µI0

)t
,
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where S =
∑K

k=1

(
Λk − Λ̄

)(
Λk − Λ̄

)t.
Likewise, for the fixed parameters γ, an Inverse-Wishart prior was specified. So

the posterior is an Inverse-Wishart

V | γ0,β, νV0 , κV0 ,V0 ∼ Inv −WishartνV

(
Ψ−1

)
(2.58)

with parameters

νV = νV0 + J

Ψ = V0 + S +
κV0J

κV0 + J

(
wγ −wγ0

)(
wγ −wγ0

)t
S =

J∑
j=1

(
βj −wjγ

)(
βj −wjγ

)t
.

For the 3PL model, an additional augmentation step is introduced according to
Beguin and Glas (2001). A variable sijk = 1 when a person ij knows the correct
answer to question k and is sijk = 0 otherwise. Its conditional probabilities are
given by (2.12). Subsequently, zijk ∼ N(akθij − bk, 1), truncated at the left of 0
when sijk = 0 and truncated at the right when sijk = 1.

It was already noted that the posterior of the guessing parameters is a Beta
distribution:

ck ∼ Beta(b′1 + sk, b′2 + nk − sk), (2.59)

where nk is the number of people who do not know the answer and sk is the number
of people who guessed the answer correctly.

For the residual variance of the RT model τ2
k , with an Inverse-Gamma prior,

the posterior is again an Inverse-Gamma distribution with parameter g1 +N/2 and
scale parameter g2 + (tk − (−φkζ + λk))t(tk − (−φkζ + λk))/2.
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Fig. 2.3. Probabilities of P (t∗ik < tik|y, t) against their expected values under the U(0, 1)
distribution for the 11 items of the neuroticism scale, Example 2.
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Evaluating Cognitive Theory: A Joint Modeling
Approach Using Responses and Response Times

Summary. The analysis of performance in computer-based educational assessment is
often confined to accuracy scores. Response times, although being an additional source
of information, are either neglected or analyzed separately. In this chapter, a model is
developed that allows the simultaneous analysis of accuracy scores and response times of
cognitive tests with a rule-based design. Further, the model is capable of determining both
time intensity and difficulty of design rules in the test, thus dissociating information that
is often confounded in current assessment procedures. This allows a better understanding
of the relationships between item characteristics and item content. The application of the
model is illustrated using a large-scale investigation of figural reasoning ability.

3.1 Introduction

An important facet reflecting cognitive processes is captured by response times. In
experimental psychology, response times have been a central source for inferences
about the organization and structure of cognitive processes (Luce, 1986). However,
in educational measurement, response time data have been largely ignored until
recently, probably due to the fact that recording response times for single items in
paper-and-pencil tests seemed difficult. With the advent of computer-based testing,
item response times have become easily available to test administrators. Taking
response times into account can lead to a better understanding of test and item
scores, and it can result in practical improvements of a test, e.g. by investigating
differential speededness (van der Linden, Scrams, & Schnipke, 1999).

The systematic combination of educational assessment techniques with response
time analysis remains a scarcity in the literature. The purpose of the present article
is to present a model which allows the integration of response time information
into an item response theory (IRT) framework in the context of educational assess-
ment. More specifically, the approach advanced here allows for the simultaneous
estimation of ability and speed on the person side, while offering difficulty and
time-intensity parameters pertaining to specific cognitive operations on the item
side. First, we will briefly outline the cognitive theory for test design and IRT mod-
els that are capable of integrating cognitive theories into educational assessment.
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Next, current results from the response time literature with respect to educational
measurement are summarized. We then develop a new model within a Bayesian
framework that integrates both strands of research and demonstrate its application
with an empirical example.

3.1.1 Cognitive Theory in Educational Assessment

One of the core interests of psychological research pertains to the analysis of cog-
nitive processes. Research paradigms in cognitive psychology often assume that
in order to successfully solve a task or test item, a subject must perform certain
associated cognitive processes, either serially or in parallel. Subjects then can be
differentiated based on the processing times necessary for specific processes. For
example, an important strand of research in cognitive psychology is concerned with
analyzing parameters from individual response time distributions on simple tasks,
and these parameters can be theoretically connected to psychological processes like
attention fluctuations or executive control (Schmiedek, Oberauer, Wilhelm, Süss,
& Wittmann, 2007; Spieler, Balota, & Faust, 2000). Complex models of reaction
times obtained in experimental settings have been developed, e.g., focusing on a
decomposition of reaction times, comparing competing models or complex cogni-
tive architectures (Dzhafarov & Schweickert, 1995). However, many of the reaction
times analyzed in experimental psychology are based on very elementary tasks that
are often psychophysical in nature (van Zandt, 2002).

The central difference between response time analysis in experimental psychol-
ogy and educational assessment lies with the cognitive phenomena under investiga-
tion and the complexity of the tasks involved. In experimental psychology, research
commonly focuses on elementary cognitive processes related to stimulus discrimina-
tion, attention, categorization, or memory retrieval (e.g., Ratcliff, 1978; Rouder, Lu,
Morey, Sun, & Speckman, in press; Spieler et al., 2000). In this research tradition,
mostly simple choice tasks are utilized that usually do not tap subjects’ reasoning
or problem-solving abilities. Further, in experimental research on reaction times
with mathematical processing models, the focus has often been either on response
times or accuracy scores, but not on both at the same time, with item parameters
sometimes not being modeled at all (e.g., Rouder, Sun, Speckman, Lu, and Zhou,
2003; but see Ratcliff, 1978 for an approach that allows to simultaneously model
experimental accuracy and response time data). This is due to the fact that such
models often imply a within-subject design with many replications of the same
simple items, a procedure not usually followed in educational measurement.

Things look differently in educational assessment. Here, differentiating subjects
according to latent variables (e.g., intelligence) as measured by psychological tests
is of primary interest. Latent variables represent unobservable entities that are
invoked in order to provide theoretical explanations for observed data patterns
(Borsboom, Mellenbergh, & van Heerden, 2003; Edwards & Bagozzi, 2000). Re-
cently, cognitive theories pertaining to test design as well as latent variable models
have been merged in the field of educational assessment in order to provide mean-
ingful results. In order to improve construct valid item generation, contemporary
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test development often incorporates findings from theories of cognition (Mislevy,
2006). With respect to construct validation, Embretson (1983, 1998) has proposed
a distinction between construct representation, involving the identification of cog-
nitive components affecting task performance, and nomothetic span, which refers
to the correlation of test scores with other constructs. Whereas traditional methods
of test construction have almost exclusively focused on establishing correlations of
test scores with other measures in order to establish construct validity (nomothetic
span), contemporary test development methods focus on integrating parameters
reflecting task strategies, processes or knowledge bases into item design (construct
representation). Hence, the cognitive model on which a test is founded lends itself to
direct empirical investigation, which is a central aspect of test validity (Borsboom,
Mellenbergh, & van Heerden, 2004). Once a set of cognitive rules affecting item
complexity has been defined based on prior research, these rules can be systemati-
cally combined to produce items of varying difficulty. In a final step, the theoretical
expectations can then be compared with empirical findings.

The integration of cognitive theory into educational assessment is usually based
on an information-processing approach and assumes unobservable mental opera-
tions as fundamental to the problem-solving process (Newell & Simon, 1972). The
main purpose of educational assessment under an information-processing perspec-
tive is to design tasks that allow conclusions pertaining to the degree of mastery of
some or all task-specific mental operations that an examinee has acquired. That is,
by specifying a set of known manipulations of task structures and contents a priori,
psychological tests can be built in a rule-based manner, which in turn allows more
fine-grained analyses of cognitive functioning (Irvine, 2002). In the process of test
design, it is therefore entirely feasible (and generally desirable) to experimentally
manipulate the difficulty of the items across the test by selecting which cognitive
operations must be conducted to solve which item correctly. Hence, as will be out-
lined in the next section, some extensions of classical IRT models are capable of
modeling the difficulty of cognitive components in a psychometric test. The basic
requirement for such a procedure, however, is a strong theory relating specific item
properties to the difficulty of the required cognitive operations (Gorin, 2006). Be-
cause classical test theory focuses on the true score that a subject obtains on a
whole test, i.e. on the sum score of correct test items, it is not well-suited to model
cognitive processes on specific test items. In contrast, numerous IRT models have
been developed that are capable of doing so (cf. Leighton & Gierl, 2007; Junker &
Sijtsma, 2001).

In the context of educational assessment, language-free tests lend themselves
to rule-based item design, which can be understood as the systematic combination
of test-specific rules that are connected to cognitive operations. A large body of
research in rule-based test design has focused on figural matrices tests, which allow
the assessment of reasoning ability with nonverbal content. In these tests, items
consist usually of 9 cells organized in 3× 3 matrices, with each cell except the last
one containing one or more geometric elements. The examinee is supposed to detect
the rules which meaningfully connect these elements across cells, and to correctly
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apply these rules in order to find the content of the empty cell. A typical item found
in such a test is given in Figure 3.1.

?

1 2 3 4 5 6 7 8

?

1 2 3 4 5 6 7 8

Fig. 3.1. Example of a figural reasoning item.

Several investigations into the structure and design of cognitive rules in figural
matrices tests have been conducted. Jacobs and Vandeventer (1972) and Ward and
Fitzpatrick (1973) report taxonomies of rules utilized in the item design of existing
figural matrices tests. In a review of the current literature, Primi (2001) describes
four main design factors (”radicals” according to Irvine, 2002) which affect item
difficulty: (1) number of elements, (2) number of rules, (3) type of rules, and (4) per-
ceptual organization of elements. In line with recent research, the two first radicals
are associated with the amount of information that must be processed during work-
ing on an item (Carpenter, Just, & Shell, 1990; Mulholland, Pellegrino, & Glaser,
1980): More information requires more working memory capacity and addition-
ally results in longer response times (Embretson, 1998). Working memory, which
is a construct grounded in cognitive psychology that has repeatedly been shown
to correlate highly with intelligence (e.g., Engle, Tuholski, Laughlin, & Conway,
1999), refers to the cognitive system that is capable of simultaneously processing
and storing information. Carpenter et al. (1990) assume that in addition to working
memory capacity, abstraction capacity, i.e. the ability to represent information in
a more conceptual way, plays a role in item solving: Examinees that are capable of
processing item features in a more abstract fashion are more capable of discovering
the correct solution. The third radical (type of rules) has been studied in several
studies (e.g., Bethell-Fox, Lohman, & Snow, 1984; Carpenter et al., 1990; Embret-
son, 1998; Hornke & Habon, 1986; Primi, 2001). In one study (Carpenter et al.,
1990), which analyzed performance on the Advanced Progressive Matrices (Raven,
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1962), evidence was presented that easier rules taxing the working memory system
less are considered before harder ones. Based on this finding, Embretson (1998)
proposed that the difficulty of understanding and applying item rules correctly is
related to working memory capacity. Finally, the fourth radical, perceptual orga-
nization, refers to how the figural elements in an item are grouped. For example,
Primi (2001) distinguished between ”harmonic” and ”disharmonic” items, where
the latter introduce conflicting combinations between visual and conceptual figural
elements, whereas the former display more congruent relationships. Primi (2001)
showed that perceptual organization had a strong effect on item difficulty, even
stronger than the number and type of rules (i.e., radicals taxing working memory
capacity). In contrast, both Carpenter et al. (1990) and Embretson (1998) found
larger effects of item features relating to working memory.

3.1.2 Psychometric Analysis of Rule-Based Test Items

The analysis of tests and items with a cognitive design is usually cast in an IRT
framework (Rupp and Mislevy, in press). One of the most basic IRT model is the
Rasch model (Rasch, 1980). It is the building block for numerous more advanced
IRT models. The Rasch model assumes unidimensionality and local item depen-
dence, which can be regarded as equivalent to each other (McDonald, 1981). In the
Rasch model, the probability of a correct response of examinee i, i = 1, 2, . . . , N to
a test item k, k = 1, 2, . . . ,K is given by

P (Yik = 1|θi, bk) =
exp(θi − bk)

1 + exp(θi − bk)
, (3.1)

where θi denotes the ability of test taker i and bk the difficulty of item k. The Rasch
model represents a saturated model with respect to the items, because each item has
its own difficulty parameter. Therefore, the model does not allow any statements
pertaining to the cognitive operations that are assumed to underly performance
on the items. Another IRT model, the linear-logistic test model (LLTM; Fischer,
1973), which is nested in the Rasch model, allows the decomposition of the item
difficulties bk such that

P (Yik = 1|θi, qk,η) =
exp(θi −

∑J
j=1 qkjηj)

1 + exp(θi −
∑J

j=1 qkjηj)
, (3.2)

where the ηj , j = 1, . . . , J , are so-called ”basic parameters” representing the diffi-
culty of a specific design rule or cognitive operation in the items, and the qkj are
indicators reflecting the presence or absence of a rule j in item k. The LLTM is
therefore capable of determining the difficulty of specific cognitive operations that
must be carried out in order to solve an item.

Both the Rasch model and the LLTM assume that all items discriminate equally
well across examinees. This is a rather strict assumption that can be relaxed. The
2 parameter logistic model (2PL model; Lord & Novick, 1968) is defined as
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P (Yik = 1|θi, ak, bk) =
exp(ak(θi − bk))

1 + exp(ak(θi − bk))
, (3.3)

with ak denoting the item discrimination parameter of item k. The 2PL model
therefore is an extension of the Rasch model in that it allows the estimation of item-
specific difficulty and discrimination parameters. Conceptually connecting the 2PL
model with the LLTM, Embretson (1999) suggested the 2PL-constrained model,
which is given by

P (Yik = 1|θi, qk,η, τ ) =
exp[

∑J
j=1 qkjτj(θi −

∑J
j=1 qkjηj)]

1 + exp[
∑J

j=1 qkjτj(θi −
∑J

j=1 qkjηj)]
, (3.4)

with τj reflecting the basic parameters of the J design variables with respect to
item discrimination. In addition to decomposing item difficulties, this model can
therefore check whether the presence of certain design features in an item enlarge
or decrease its discriminatory power. The 2PL-constrained model is nested in the
2PL model and therefore allows a direct comparison of model fit.

Both the LLTM and the 2PL-constrained model make the strong assumption
that all item difficulties can be perfectly predicted from the basic parameters, i.e.
there is no error term in the regression of the item difficulties and/or discrimi-
nation parameters on the respective item design features. An implication of this
assumption is that all items with the same design structure must have the same
item parameters; for example, in the LLTM, all items with the same design vector
qkj must have the same item difficulty bk. It has been shown that there can still
be considerable variation in the item difficulties after accounting for item design
features (Embretson, 1998). In order to take this into account, an error term must
be introduced into the model. Janssen, Schepers, and Peres (2004) present an ap-
plication of this approach for the LLTM, where item difficulty bk is decomposed as

bk =
J∑

j=1

qkjηj + εk, (3.5)

with εk ∼ N(0, σ2
ε ). The error term εk now captures the residual variance not

explained by the design parameters. This approach can be generalized to the 2PL-
constrained model as well, i.e. the discrimination parameter ak can be assumed to
show variation between structurally equal items. A framework allowing the analysis
of such effects has been suggested by Glas and van der Linden (2003) and De Jong,
Steenkamp, and Fox (2007). By allowing random error in these models, the amount
of variance that is explained by the cognitive design in the item parameters can be
evaluated and, hence, the quality of the proposed cognitive model can be assessed.

3.1.3 Response Times in Educational Assessment

Traditional data analysis in educational assessment is founded on accuracy scores.
Results obtained in classical, unidimensional IRT models like the 2PL model usu-
ally provide information on person and item parameters: For each person, a person
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parameter reflecting latent ability is estimated, and for each item, a difficulty and a
discrimination parameter are obtained (Embretson & Reise, 2000). In such models,
response times are not modeled. However, response times are easily available in
times of computerized testing, and they can contain important information beyond
accuracy scores. For example, response times are helpful in detecting faking behav-
ior on personality questionnaires (Holden & Kroner, 1992), and they can provide
information on the speededness of a psychometric test or test items (Schnipke &
Scrams, 1997; van der Linden et al., 1999) or aberrant response patterns (van der
Linden & van Krimpen-Stoop, 2003). Apart from these issues pertaining to test
administration, response times in psychometric tests with a design potentially con-
tain vital information concerning the underlying cognitive processes. Importantly,
response time analysis may allow new insights into cognitive processes that tran-
scend those obtained by IRT modeling. For example, one might be interested in the
relationship between the difficulty and time intensity of a cognitive process: Are
difficult processes the most time-intensive? What is the relationship between latent
ability (e.g., intelligence) and speed? Does the test format affect this relationship?
In order to investigate these questions, a unified treatment of accuracy scores and
response times is required.

Three different strategies have been used in the past to extract response time-
related information from psychometric tests. Under the first strategy, response times
are modeled exclusively. This strategy is usually applied to speed tests which are
based on very simple items administered with a strict time limit for which accuracy
data offer only limited information. For example, in his linear exponential model,
Scheiblechner (1979) suggests that the response time T for person i responding to
item k is exponentially distributed with density

f(tik) = (τi + γk)exp[−(τi + γk)tik], (3.6)

where τi is a person speed parameter and γk is an item speed parameter. Anal-
ogous to the LLTM, the item speed parameter (γk) can now be decomposed into
component processes that are necessary to solve the item:

γk =
J∑

j=1

akjηj , (3.7)

where ηj indicates the speed of component process j, and akj is a weight indicating
whether component process j is present in item k. Maris (1993) suggested a similar
model, based on the gamma distribution. Note that these models focus on response
times exclusively, whereas accuracy scores are not taken into consideration.

A second strategy chosen by several authors implies a separate analysis of re-
sponse times and accuracy scores. For example, Gorin (2005) decomposed the dif-
ficulty of reading comprehension items using the LLTM, and in a second step re-
gressed the log-transformed response times on the basic parameters. A similar ap-
proach was chosen by Embretson (1998) and Primi (2001) with a figural reasoning
task, whereas Mulholland et al. (1980) used ANOVAs to predict response times by
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item properties in a figural analogies test separately for correct and wrong answers,
respectively (cf. Sternberg, 1977). In contrast, Bejar and Yocom (1991) compared
both difficulty parameters and the shape of cumulative response time distributions
of item isomorphs, i.e. parallel items, in two figural reasoning test forms. Separate
analyses provide some information on both accuracy scores and response times, but
the relation between these two variables cannot be modeled, as they are assumed to
vary independently. For an analysis that overcomes this difficulty, a model is needed
that can simultaneously estimate response time parameters and IRT parameters.
This has been done in a third strategy of analyses based on the joint modeling
of both response times and accuracy scores. Recently, several models have been
proposed for the investigation of response times in a psychometric test within an
IRT framework. One of the first models was introduced by Thissen (1983), which
describes the log-transformed response time of person i to item k as

log(Tik) = υ + si + uk − bzik + εik, (3.8)

with εik ∼ N(0, σ2
ε ). In this model, υ reflects the overall mean log response time,

si and uk are person- and item-related slowness parameters, respectively, −b rep-
resents the log-linear relation between response time and ability, zij is the logit
estimated from a 2PL model and ε is an error term. The new parameter in this
model is −b, which reflects the relationship of ability and item difficulty with the
response time. The model suggested by Thissen (1983) is rather descriptive than ex-
planatory in nature in that it does not provide a decomposition of item parameters
reflecting cognitive operations.

The model proposed by Roskam (1997), which conceptually is very similar to
the model by Verhelst et al. (1997), specifies the probability of a correct response
of person i to item k as

P (Yik = 1|Tik) =
θiTik

θiTik + εk
=

exp(ξi + τik − σk)
1 + exp(ξi + τik − σk)

, (3.9)

where θi represents the person ability, εk is item difficulty, Tik is response time, and
ξi, τik and σk represent the natural logarithms of θi, Tik and εk, respectively. In
this model, response time is parametrized as a predictor for the solution probability
of item k by person i. As can be seen, if Tik goes to infinity, the probability of a
correct solution approaches 1 irrespective of item difficulty. The model, therefore,
is more suitable for speed tests than for power tests, because items in a speed test
usually have very low item difficulties under conditions without a time limit. This
is not the case for items in a power test, even with a moderate time limit.

A model more suitable for power tests under time-limit conditions was proposed
by Wang and Hanson (2005), who extended the traditional three-parameter logistic
(3PL) model by including response times as well as parameters reflecting item
slowness and person slowness, respectively:

P (Yik = 1|θi, ρi, ak, bk, ck, dk, Tik) = ck +
1− ck

1 + e(−1.7ak[θi−(ρidk/tik)−bk])
, (3.10)
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where ak, bk and ck are the discrimination, difficulty, and guessing parameter of
item k; and θi is a parameter for person i. dk is an item slowness parameter; ρi is a
person slowness parameter; and Tik is the response time of subject i on item k. In
this model, response times are treated as an additional predictor, but in contrast
to the model by Roskam (1997), as response time goes to infinity, a classical 3PL
model is obtained. A similar model for speeded reasoning tests, with presentation
time as an experimentally manipulated variable, was developed by Wright and
Dennis (1999) in a Bayesian framework. The model allows the dissociation of time
parameters with respect to persons and items, thereby avoiding the problematic
assumptions as above. However, a major problem here pertains to the response
times, which are modeled as fixed parameters. It is a common assumption across
the literature that response time is a random variable (Luce, 1986). By treating a
variable assumed to be random as fixed, systematic bias in parameter estimation
can occur. Further, the joint distribution of item responses and response times
cannot be analyzed. The model by Wang and Hanson (2005), therefore, can only
be regarded as a partial model, as stated by the authors.

A different approach was chosen by van Breukelen (2005). He used a bivariate
mixed logistic regression model, predicting lognormalized response times as well
as the log-odds of correct responses simultaneously. For the log-odds, the model
assumed the lognormalized response times and item-related design parameters with
random effects (Rijmen & DeBoeck, 2002) as predictors. Similarly, the response
times were predicted by item-related design parameters as well as accuracy scores.
However, this approach can be problematic. Van Breukelen (2005), for example,
took the log-normalized response times into account, but did not specify parameters
reflecting the test-taker’s speed or the time intensity of the items. If response times
are both regarded as a person-related predictor and as being implicitly equal to
processing speed, as was done in the model by van Breukelen (2005), the assumption
is made that the time intensity of the items is equal, although their difficulties are
not. This assumption can be avoided by including explicit time parameters in the
model, reflecting the time intensity of the items and the speed of the test takers,
respectively.

To conclude, several IRT models have been developed recently that are capable
of incorporating response times, but these suffer from some conceptual or statistical
drawbacks for the application to time-limited tests. Further, they cannot relate the
design structure of the utilized items to the response times and accuracy scores
simultaneously. A model that can overcome these difficulties, based on the model
developed by van der Linden (2007), will be described below.

3.2 A Model for Response Accuracies and Response Times

With responses and response times (RTs), we have two sources of information on a
test. The first provides us with information on the response accuracy of test takers
on a set of items. The RTs result from the required processing time to solve the
items. Naturally, test takers differ in their speed of working and different items
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require different amounts of cognitive processing to solve them. This leads us to
consider RTs as resulting from person effects and item effects, a separation similar
to that made in item response theory. A framework will be developed that deploys
separate models for the responses and the response times as measurement models
for ability and speed, respectively. At a higher level, a population model for the
person parameters (ability and speed) is deployed to take account of the possible
dependencies between the person parameters (see Figure 4). This hierarchical mod-
eling approach was recently introduced by van der Linden (2007). The focus of this
chapter, however, is on the item parameter side. A novel model is presented where
the item parameters of both measurement models can be modeled as a function of
underlying design factors.

Level 1 Measurement Model for Accuracy

The probability that person i = 1, . . . , N answers item k = 1, . . . ,K correctly
(Yik = 1), is assumed to follow the two-parameter normal ogive model (Lord &
Novick, 1968):

P (Yik = 1|θi, ak, bk) = Φ(akθi − bk), (3.11)

where θi denotes the ability parameter of test taker i and ak and bk denote the
discrimination and difficulty parameters of item k respectively. Φ(·) denotes the
cumulative normal distribution function. The normal ogive form of the 2-parameter
IRT model is adopted for computational convenience, as was shown by Albert
(1992). Its latent variable form lends itself perfectly for Bayesian estimation and is
given by:

Zik = akθi − bk + εθik
, (3.12)

where Zik ≥ 0 when Yik = 1 and Zik < 0 otherwise and with εθik
∼ N(0, 1). With

this data augmentation approach (Albert, 1992; Lanza, Collins, Schafer, & Flaherty,
2005) it is possible to change from dichotomous response variables to continuous
latent responses. Also, as will be shown below, after a suitable transformation of
the RTs to normality, the simultaneous distribution of the responses and RTs turns
out to be a bivariate normal one. This allows us to view the entire structure as a
multivariate normal model, thereby simplifying the statistical inferences as well as
the estimation procedure.

Level 1 Measurement Model for Speed

As a result of a natural lower bound at zero, the distribution of response times
is skewed to the right. Various types of distributions are able to describe such
data. For instance, the Poisson, Gamma, Weibull, inverse normal, exponential and
lognormal distributions have been employed to describe RT distributions in psy-
chometric applications. The reader is referred to Maris (1993); Roskam (1997);
Rouder et al. (2003); Thissen (1983); van Breukelen (1995); Schnipke and Scrams
(1997) and van der Linden (2006) for examples. However, in this application the
log-normal model is chosen to model the RT distributions for specific reasons. First
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of all, Schnipke and Scrams (1997) and van der Linden (2006) have shown that
the lognormal model is well suited to describe such distributions and it generally
performs well with respect to model fit as we experienced during the analyses of
several data sets. Second, the lognormal model fits well within the larger framework
for responses and RTs. It is assumed that the log-transformed response times are
normally distributed. Thereby, as mentioned above, the simultaneous distribution
of the latent responses and log-transformed RTs can be viewed as a bivariate nor-
mal one. This is a strong advantage over other possible RT distributions, since its
generalization to a hierarchical model becomes straightforward. Also, the proper-
ties of multivariate normal distributions are well known (Anderson, 1984), which
simplifies the statistical inferences.

By analogous reasoning, an RT model will be developed that is similar in struc-
ture to the 2-parameter IRT model. Test takers tend to differ in their speed of
working on a test, therefore, a person speed parameter ζi is introduced. Like abil-
ity in IRT, speed is assumed to be the underlying construct for the RTs. Also, it
is assumed that test takers work with a constant speed during a test and that,
given speed, the RTs on a set of items are conditionally independent. That is, the
speed parameter captures all the systematic variation within the population of test
takers. These assumptions are similar to the assumptions of constant ability and
conditional independence in the IRT model.

However, test takers do not divide their time uniformly over the test, because
items have different time intensities. The expected RT on an item is modeled by a
time intensity parameter λk. Basically, an item that requires more steps to obtain
its solution can be expected to be more time intensive, which is then reflected in
a higher time intensity. It can be seen that λk is the analogue of the difficulty
parameter bk, reflecting the time needed to solve the item. As an example, running
a 100 meters will be less time consuming than running 200 meters. Clearly, the
latter item takes more steps to be solved and will have a higher time intensity.
An illustration of the effect on time intensity on the expected RTs is given in
Figure 3.2. In this figure, Item Characteristic Curves (ICC) for the IRT model
(left figure) and Response Time Characteristic Curves (RTCC) (right figure) are
plotted against the latent trait. The RTCCs show the decrease in expected RT as
function of speed. For both measurement models two curves are plotted that show
the shift in probability/time as a result of a shift in difficulty/time intensity. In
this example, the above curve would reflect running the 200 meters, while the lower
curve reflects the expected RTs on the 100 meters distance. Note, however, that it
is not necessarily so that running 200 meters is more difficult than the 100 meters.

Now for the expectation of the log-response time of person i on item k we
have obtained that E(Tik) = −ζi + λk. However, a straightforward yes-no question
might show less variability around its mean λk than predicted by ζi. Such an effect
can be considered as the discriminative power of an item and therefore a time
discrimination parameter φk is introduced. This parameter controls the decrease in
expected RT on an item for a one step increase in speed of a test taker. It is the
analogue of the discrimination parameter ak in Equation 3.12. The effect of item
discrimination on the ICCs and RTCCs are illustrated in Figure 3.3. It can be seen
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that the difference in expected RTs between test takers working at different speed
levels is less for the lower discriminating item.

Finally, the log-response time Tik of person i on item k follows a normal model
according to:

Tik = −φkζi + λk + εζik
, (3.13)

where εζik
∼ N(0, σ2

k) models the residual variance.
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Fig. 3.2. ICC (left) and RTCC (right) curves for two items with different time intensity
and difficulty but equal discrimination parameters.
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Fig. 3.3. ICC and RTCC curves for two items with differing discrimination, where b = 0
and λ = 4

Level 2 Model for the Person Parameters

In IRT, it is common to view observations as nested within persons. Local in-
dependence between observations is assumed conditional on the ability of a test
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taker. That is, a test taker is seen as a sample randomly drawn from a population
distribution of test takers. Usually, a normal population model is adopted, so

θi ∼ N(µθ, σ
2
θ) (3.14)

However, together with the RT model there are now two traits that describe each
test taker, ability and speed. At the second level of modeling, these person param-
eters are assumed to follow a bivariate normal distribution:

(θi, ζi) = µP + eP , eP ∼ N(0,ΣP ), (3.15)

where µP = (µθ, µζ) and the covariance structure is specified by:

ΣP =
[

σ2
θ ρ
ρ σ2

ζ

]
. (3.16)

The parameter ρ in the model for the person parameters reflects possible dependen-
cies between speed and accuracy of the test takers. For instance, when ρ is negative,
this means that persons who work faster than average on the test are expected to
have below-average abilities. When ρ = 0, there is independence between ability
and speed. However, this is not necessarily equivalent to independence between the
responses and RTs, since such a dependency can occur via the item side of the
model as well, as will be discussed below.

This hierarchical approach, which was first presented by van der Linden (2007),
models a connection between the two level 1 measurement models. Note that Equa-
tion 3.15 is a population model and is therefore entirely different from what is
known as the speed-accuracy trade-off (Luce, 1986). The latter is a within-person
phenomenon, reflecting the trade-off between accuracy and speed of working for a
specific test taker, and is often assumed to be negative. That is, it assumes that a
test taker chooses a certain speed level of working and, given that speed, attains a
certain ability. If he or she chooses to work faster, the trade-off then predicts that
this test taker will make more errors and, as a result, will attain a lower ability. On
the contrary, the model given in Equation 3.15 describes the relationship between
ability and speed at the population level. It is perfectly reasonable that, within a
population, the dependency between ability and speed is positive, reflecting that
faster working test takers are also the higher-ability candidates. In the analysis of
real test data, we have found positive as well as negative dependencies between
ability and speed (Klein Entink, Fox, & van der Linden, in press).

So far, the model is equivalent to that presented by van der Linden (2007) and
as described in Fox, Klein Entink, and van der Linden (2007). Another possible
bridge between the two level 1 models can be built on the item side. That one will
be developed now and will present a novel extension of the model that allows us to
describe item parameters as a function of underlying cognitive structures, which is
the focus of this chapter.

Level 2 Model for the Item Parameters

The hierarchical approach is easily extended to the item side of the model. As
discussed in the overview in the Introduction, several approaches have been devel-



54 3 Evaluating cognitive theory

oped to model underlying item design structures in IRT. However, some of these
approaches made rather strict assumptions by incorporating the design model into
the IRT model. We will present an approach where this is avoided, by introducing
possible underlying design features at the second level of modeling.

Interest goes out to explaining differences between items resulting from the item
design structure. Since the characteristics of the items are represented by their item
parameters, it seems straightforward to study the differences in the estimated item
parameters as a function of the design features. Moreover, it should be possible to
assess to what extend the differences in these parameters can be explained by the
design features. To do so, the hierarchical modeling approach is extended to the item
side of the model first. Similarly to Equation 3.15, the vector ξk = (ak, bk, φk, λk)
is assumed to follow a multivariate normal distribution,

ξk ∼ N(µI ,ΣI) (3.17)

where ΣI specifies the covariance structure of the item parameters:

ΣI =


σ2

a σab σaφ σaλ

σab σ2
b σbφ σbλ

σaφ σbφ σ2
φ σφλ

σaλ σbλ σφλ σ2
λ

 . (3.18)

ΣI is the second bridge between the level 1 models. It allows us to study dependen-
cies between the item parameters. For instance, if there is a dependency between
item difficulty and time intensity, this would be reflected by the covariance compo-
nent between these parameters. For instance, a positive estimate for σbλ indicates
that more difficult items also tend to be more time consuming.

Now suppose we have a test where items are formulated using either squares,
circles or triangles and we are interested if as such items differ in their difficulty. This
leads us to consider the following model, where we develop an ANOVA approach
to model the effects of each rule. That is, the means of the item parameters are
decomposed into a general mean and deviations from that mean as a result of the
underlying item construction rules used to formulate the items. To reflect the three
symbols used to formulate the items, two dummy variables are constructed. The
first variable, denoted by A1 of length K, contains a 1 for circles, a 0 for triangles
and -1 for squares. The second variable A2 contains a 0 for circles, a 1 for triangles
and also a -1 for squares. Now, following Equtaion 3.5, the difficulty of item k can
be modeled as

bk = γ
(b)
0 + A1kγ

(b)
1 + A2kγ

(b)
2 + e

(b)
k . (3.19)

This indicator variable approach models the difficulty of item k as a deviation from
the base level γ0 as a result of the figure used to construct the item. That is, if
item k is constructed using circles, its difficulty is predicted by γ0 + γ1. Are there
triangles used, its difficulty is given by γ0 + γ2. In the case the squares are used
its difficulty is modeled as γ0 − γ1 − γ2. Note that when γ3 denotes the effect for
squares, it must equal −γ1 − γ2 since otherwise the model is over parameterized.
Let A = (1,A1,A2) and γ(b) = (γ0, γ1, γ2)t, then the model can be represented as
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bk = Akγ(b) + e
(b)
k (3.20)

In the previous example the interest was only in dissociating the heterogeneity
in the item difficulty parameters into three possible groups of items. However, if
we are interested in validating a cognitive model that underlies the item design it
makes sense to extend the model to the other item parameters as well. The full
multivariate model for the item parameters can be generalized to:

ak = Akγ(a) + e
(a)
k (3.21)

bk = Akγ(b) + e
(b)
k (3.22)

φk = Akγ(φ) + e
(φ)
k (3.23)

λk = Akγ(λ) + e
(λ)
k , (3.24)

where the error terms are assumed to follow a MVN distribution, that is e ∼
N(0,ΣI). This is a generalization of Equation 3.5, not only by allowing for resid-
ual variance in other item parameters than b, but by modeling covariance com-
ponents between the item parameters as well. Further, A is a design matrix con-
taining zeros and ones denoting which construction rules are used for each item,
γ(a),γ(b),γ(φ),γ(λ) are the vectors of effects of the construction rules on discrimi-
nation, difficulty, time discrimination and item time intensity, respectively.

The complete model structure is represented in Figure 3.4 below. The ovals
denote the measurement models for accuracy (left) and speed (right). The circles
at level 2 denote the covariance structures that connect the level 1 model param-
eters. The structural model is denoted by the square box. The square containing
AI denotes the design matrix containing item specific information that allows for
explaining variance between the item parameters. This approach is not limited to
rule based test construction, but can just as well be used to test hypotheses of,
for instance, differences in cognitive processing when data are presented in a table
versus presented in a figure.

By the conditional independence assumption and by taking the possible depen-
dencies to a second level of modeling, this framework becomes very flexible. It allows
for the incorporation of any measurement model for either accuracy or speed. For
example, the measurement model for the dichotomous responses could be replaced
by a model for polytomous items. When needed, independence between the two
level 1 models can be obtained by restricting ΣI and ΣP to be diagonal matrices.
However, the strength of the framework comes from the simultaneous modeling of
two data sources on test items. The two likelihoods at level 1, linked via the covari-
ance structures at level 2, allow us to use the RTs as collateral information in the
estimation of the response parameters and vice versa.

3.3 Bayesian Inference and Estimation

This section deals with the statistical treatment of the model. The model is esti-
mated in a fully Bayesian framework. Before discussing the estimation procedures,
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Fig. 3.4. Schematic representation of the modeling structure.

however, first the basic principles of the Bayesian approach are introduced. For a
general introduction to the Bayesian approach and its estimation methods, see Gel-
man et al. (2004). Bayesian estimation of IRT models is discussed in, for instance,
Albert (1992), Patz and Junker (1999) and Fox and Glas (2001).

3.3.1 Bayesian Approach

In the classical approach to statistics, a parameter µ is assumed to be an unknown,
but fixed, quantity. A random sample from a population indexed by µ is obtained.
Based on the observed sample, the value of µ can be estimated. Instead, in the
Bayesian approach µ is assumed to be random. That is, there is uncertainty about
its value, which is reflected by specifying a probability distribution for µ. This is
called the prior distribution and reflects the subjective belief of the researcher,
before the data are seen. Subsequently, a sample is obtained from the distribution
indexed by µ and the prior distribution is then updated. The updated distribution
is called the posterior and is obtained via Bayes’ rule. Let p(µ) denote the prior
and f(x|µ) denote the sampling distribution, then the posterior density of µ|x is

p(µ|x) = f(x|µ)p(µ)/m(x), (3.25)

where m(x) denotes the marginal distribution of x (Casella & Berger, 2002, pp.
324).
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3.3.2 Markov Chain Monte Carlo Methods

The posterior distributions of the model parameters are the objects of interest
in Bayesian inference. For simple models, obtaining these estimates can be done
analytically. However, for complex models as presented above, it is impossible to
do so. Sampling based estimation procedures, known as Markov Chain Monte Carlo
(MCMC) methods, however, solve these problems easily. A strong feature of these
methods is that their application remains straightforward, while model complexity
may increase.

The MCMC algorithm applied in this paper is known as the Gibbs sampler
(Geman & Geman, 1984). To obtain samples from the posterior distributions of
all model parameters, a Gibbs sampling algorithm requires that all the conditional
distributions of the parameters can be specified. Basically, a complex multivariate
distribution from which it is hard to sample is broken down into smaller univariate
distributions, conditional on the other model parameters, from which it is easy
to draw samples. After giving the algorithm some arbitrary starting values for all
parameters, it alternates between the conditional distributions for M iterations.
Thereby, every step depends only on the last draws of the other model parameters.
Hence, (under some broad conditions) a Markov Chain is obtained that converges
towards a target distribution. It has been shown that if the number of iterations
goes to infinity, the target distribution can be approximated with any accuracy
(Robert & Casella, 1999).

To illustrate the approach, consider estimation of the RT model given by Equa-
tion 3.13. For simplicity of this example, we assume that φ = 1 and independence
from the response model. First, (independent) prior distributions for ζ,λ and σ2

are specified. Now, since it does not depend on m(t) up to some constant, the
posterior distribution is proportional to p(ζ,λ,σ2|t) ∝ f(t|ζ,λ,σ2)p(ζ)p(λ)p(σ2).
After providing the algorithm with starting values ζ(0),λ(0) and σ2(0), the algo-
rithm proceeds as follows:

• At iteration m, draw the person parameters ζ from p(ζ|λ(m−1),σ2(m−1)
, t).

• Using the new values ζ(m), draw λ from p(λ|ζ(m),σ2(m−1)
, t).

• Using the new values λ(m), draw σ2 from p(σ2|ζ(m),λ(m), t).
• Increment m with 1 and repeat the above steps for M iterations.

Now M values for both parameters have been obtained. Before descriptive statistics
as the posterior mean and posterior variance can be obtained, issues like autocor-
relation of the samples and convergence of the Markov chain must be checked.
Most statistical software packages provide means to obtain autocorrelations. Con-
vergence can be checked by making trace plots, that is, plotting the drawn samples
against their iteration number. This allows for a visual inspection to determine if
stationarity has been reached. Dividing the MCMC chain into two or more subsets
of equal sample size and comparing the posterior mean and standard deviation
also provides information on convergence. Another approach is rerunning the algo-
rithm using different starting values. This is also helpful to determine if the chain
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has really converged to a global optimum. Other (numerical) methods to assess
convergence issues are discussed in Gelman et al. (2004, Section 11.6). Since the
first samples are influenced by the starting values, a ’burn-in’ period is used, which
means that the first samples of the chain are discarded. The posterior means and
variances of the parameters are then obtained from the remaining Q samples. This
is usually done by checking convergence of the chain and when this seems to be
reached, running the algorithm for another few thousand iterations on which the
inferences can be based. The BOA software for use in the SPLUS or R statistical
environment provides several of these diagnostic tools (numerical and graphical) to
assess convergence of the MCMC chains (Smith, 2007).

The model presented above lends itself for a fully Gibbs sampling approach. This
is a feature of the multivariate normality of the responses and RTs after the data
augmentation step. The derivation of the conditional distributions for the Gibbs
sampling algorithm is discussed in the Appendix of this chapter.

Model Checking and Evaluation

In a Bayesian framework, goodness of fit tests can be performed using posterior
predictive checks (Gelman, Meng, & Stern, 1996; Gelman et al., 2004). Model fit can
be evaluated by comparing replications of the data xrep, drawn from the posterior
predictive distribution of the model, with the observed data. A discrepancy between
model and data is measured by a test quantity T (x|µ) (for example, mean squared
error), where x denotes the data and µ the vector of model parameters. A Bayesian
p-value p∗ can be estimated as the probability that the replicated data under the
model are more extreme than the observed data:

p∗ = P (T (xrep,µ) ≥ T (x,µ)|x), (3.26)

whereby p-values close to 0 or 1 indicate extreme observations under the model.
Using the drawn samples each iteration of the Gibbs sampler, these estimates of
the p-values are easily obtained as a by product from the MCMC chain. For more
details, see Gelman et al. (1996).

Next, appropriate test quantities have to be chosen. An important assumption
of the model is that of local independence. Therefore, an odds ratio statistic was
used to test for possible violations of local independence between response patterns
on items. For an impression of the overall fit of the response model, an observed
score statistic was estimated to assess if the model was able to replicate the observed
response patterns of the test takers. For a detailed description of these two statistics,
see Sinharay (2005) and Sinharay et al. (2006).

Residual analysis is another useful means to examine the appropriateness of a
statistical model. The basic idea is that the observed residuals, that is, the difference
between the observed values and the expected values under the model, should reflect
the assumed properties of the error term. To assess the fit of the RT model, van der
Linden and Guo (in press) proposed a Bayesian residual analysis. More specifically,
by evaluating the actual observation tik under the posterior density, the probability
of observing a value smaller than tik can be approximated by
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uik ≈
M∑

m=0

Φ
(
tik|ζ(m)

i , φ
(m)
k , λ

(m)
k

)
/M, (3.27)

from M iterations from the MCMC chain. According to the probability integral
transform theorem (Casella & Berger, 2002, pp. 54), under a good fitting model,
these probabilities should be distributed Uik ∼ U(0, 1). Model fit can then be
checked graphically by plotting the posterior p-values against their expected val-
ues under the U(0, 1) distribution. When the model fits well, these plots should
approximate the identity line.

Model Selection

Research hypotheses are usually reformulated so that two competing statistical
models are obtained that explain the observed data. An appropriate test criterium
then has to be selected that evaluates these two models with respect to their ex-
planatory power for the data. The Bayes factor (Kass & Raftery, 1995; Klugkist,
Laudy, & Hoijtink, 2005) can be used to test a model M1 against another model
M0 for the data at hand. The Bayes factor is defined as the ratio of the marginal
likelihoods of these models:

BF =
p(y|M0)
p(y|M1)

. (3.28)

The marginal likelihood is the average of the density of the data taken over all
parameter values admissible by the prior. That is: p(y|M) =

∫
p(y|γ,M)p(γ|M)dγ,

where γ is the vector of model parameters. Since the Bayes factor weighs the two
models against each other, a value near one means that both models are equally
likely. A value of 3 or greater is considered to be strong evidence in favor of the
null model, while on the contrary a value near zero favors the larger model as the
best explanation for the data (Kass & Raftery, 1995).

In the special case that model M0 is nested in model M1, that is, M0 ⊂ M1,
we can express model M0 as a restriction of M1: p(y|M1,γ = 0) = p(y|M0). When
this special case holds, computation of the Bayes Factor for testing M1 versus
M0 simplifies to evaluating the marginal posterior density p(γ|y,M1) at γ = 0.
This result is known as the Savage-Dickey density ratio (Dickey, 1971; Verdinelli &
Wasserman, 1995):

BF =
p(γ = 0|y,M1)
p(γ = 0|M1)

, (3.29)

where p(γ = 0|M1) is the evaluation of the restriction under the prior density
of model M1. Using this result greatly reduces the computational burden, since
it allows to evaluate different models from the estimated marginal density of the
effects under the largest model.

Explained Variance

A Bayesian R2 statistic is proposed to assess the proportion of explained variance
in the item parameters by the design rules. Gelman and Pardoe (2006) presented a
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R2 statistic in Bayesian multilevel framework. For the difficulty parameters we had
from Equation 3.23

bk = Aγ(b) + ek,

denoting the regression at level 2 of the model parameters b on design matrix A,
where we dropped the superscript (b) in the error term for the moment. Then, the
proportion explained variance in the b-parameters is given by

R2 = 1−
E
(

1
K−1

∑K
i=1 e2

k

)
E
(

1
K−1

∑K
i=1(bk − b̄)2

) , (3.30)

where E denotes the posterior mean. Using the MCMC algorithm, these expecta-
tions can be obtained by averaging over the draws from the posterior distribution.
When the model explains almost all variability in b, the R2 statistic will be close
to 1. If the R2 statistic is close to 0, then the variability in b almost equals the
average variance of the errors.

3.4 Empirical Example

The application of the model is illustrated using a large-scale investigation of figural
reasoning ability, based on an earlier study by Hornke and Habon (1986). In their
study, the rule based test design was evaluated on the difficulty parameters using
the LLTM modeling approach. Although the data set they used in that study is
different form the one used here, the underlying item design is the same. In our
study, not only will we try to validate the cognitive model on the item difficulties,
but also by examining the time intensities of the items.

3.4.1 Principles of the Test

The current empirical example is based on the rule framework proposed by Hornke
and Habon (1986) and Hornke (2002). These authors distinguish between three
types of radicals that largely correspond to those mentioned by Primi (2001): Type
of rules, number of rules and perceptual organization of elements. Eight different
rules were used for item design: Identity, addition, substraction, intersection, seri-
ation, variation of closed gestalts, unique addition and variation of open gestalts
(see Figure 3.5). Identity implies that the same figural element occurs three times.
For addition, a subject needs to mentally superimpose figural elements in the first
two cells of a row or column, whereas subtraction requires that elements occuring
both in the first and second cell are omitted in the third. Intersection implies that
only elements that occur in the first two cells can be present in the third cell of a
row or column. Seriation means that a transformation of a figural element between
the first and second cell is repeated from the second to the third cell (e.g., size).
Further, variation of gestalts (both of closed and open ones) means that the se-
quence of presentation of figural elements is varied. Finally, unique addition means
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Identity Addition

?? ??

Subtraction Intersection

Seriation Variation of closed gestalts

?? ??

Unique addition Variation of open gestalts

? ?? ??

? ?? ??? ?

Fig. 3.5. Set of operations used in item construction.

that only figural elements that occur once in the first two cells are also present in
the third cell of a row or column. The number of rules per item varied between one
and two.

Further, Hornke and Habon (1986) introduced a radical similar to perceptual
organization: The figural components of an item could be either separated, inte-
grated or embedded. Separated components were designed to be easily distinguish-
able (e.g., see identity and variation of closed gestalts in Figure 3.5). Integrated
components demand that design rules are related to different facets of the same
figural element, and that the figural element that relates to the rule operating in
the item is identified (e.g., see seriation in Figure 3.5: The rule refers to shape, but
not to texture). In solving items with embedded components, an examinee must
conduct an additional mental search operation in order to discover to which part of
a figural element a rule relates (see unique addition in Figure 3.5). Finally, Hornke
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and Habon (1986) allowed relations between figural elements to occur across rows,
columns or both (e.g., see addition in Figure 3.5 for columnwise direction and
subtraction for row- and columnwise direction, respectively). As can be seen from
Figure 1, which represents a typical item from the test, 8 solution alternatives were
available to subjects. Some of the alternatives were partially correct (see alterna-
tives 3, 6, 7, and 8 for correct application of identity only, see alternative 5 for
correct application of unique addition only).

3.4.2 Data Set

Data from 30,000 examinees and 456 items were available. The test takers were
divided over 30 groups who each took 12 items. Each group had six overlapping
items with the previous group (and thus also six with the next group) which es-
tablished the links between the groups. Because analyzing the complete data is
computationally unfeasible, a subset of the data was analyzed. The subset chosen
was large enough in order to have all design rules sufficiently present. Since the links
between the groups had to be maintained, the first 6422 test takers were selected,
who answered a total of 186 items. From this set, 14 items were removed that were
constructed from only one component, since perceptual organization is not involved
in these items. (Another approach could be to estimate the IRT and RT-models
separately on a larger data set and analyze the rule-based design in a second step,
based on these estimates. However, for this example it is preferred to analyze the
accuracies and response times jointly, since this allows the estimation of the co-
variances between the level 1 model parameters.) In the subset, the least occurring
construction rule was the identity rule, which was used in 26 items. The variation
of closed gestalts occurred most frequently, in 51 items. So, all construction rules
were sufficiently present in the subset to obtain reasonable estimates of their effects.
The row wise and column wise operations and their combination occurred almost
equally in this sample (56, 56 and 60 times respectively).

3.4.3 Goal of the Study

Basically, the test taker has to decipher and trace back the steps made by the test
developer. That is, discovering the separate item components (perceptual organi-
zation), determining the row and column directions and applying the appropriate
item construction rule. The analysis aims at testing the assumption that each of
these steps contributes to the amount of cognitive processing required to come to
the solution of the item. If so, we expect that different combinations of perceptual
organization, construction rules and row/column wise organization not only lead
to different difficulties of the items, but also reflect the amount of time required
to solve the item. Therefore, it is expected that different combinations of design
features lead to heterogeneity in the difficulties and time intensities of the items.
This leads us to consider the following model:
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bk = γ
(b)
0 + γ

(b)
rule1 + γ

(b)
rule2 + γ(b)

p.o. + γ(b)
rc + e

(b)
k (3.31)

λk = γ
(λ)
0 + γ

(λ)
rule1 + γ

(λ)
rule2 + γ(λ)

p.o. + γ(λ)
rc + e

(λ)
k , (3.32)

where γ0 denotes the baseline for difficulty/time intensity, which allows us to view
the other effects as deviations from this base level. Further, γrule denotes the effect
for the rule used (one of the eight), γp.o. the effect of the perceptual organization, γrc

the effect of the row-wise or colum-wise operation and ek models the unexplained
variability.

We will restrict ourselves to the difficulty and time intensity parameters for
practical reasons, since only a low amount of 12 items per person was available.
These parameters can be estimated with more precision than the discrimination
parameters. Therefore, they lend themselves better for this study, since the design
matrix A involves many parameters. Necessarily, also interaction effects like rule ×
search operation had to be ignored. Their incorporation would lead to 3 × 8 = 24
additional effects to be estimated, which is unfeasible unfortunately. Therefore,
although a strict assumption, the design effects are assumed to be independent
from each other.

From Equations 3.31 and 3.32 it is possible to formulate more restricted models
to test some hypotheses. The following four models will be considered:

• Let M0 denote the restricted model where (bk, λk) = (γ(b)
0 , γ

(λ)
0 ) + (e(b)

k , e
(λ)
k ).

It assumes that there is no explanatory effect for difficulty or time intensity
resulting from the cognitive design.

• Model M1 includes the effects for perceptual organization. That is, we want to
test whether there is a difference in difficulty and/or time intensity between
items where the two components are either embedded, integrated or separated.

• Model M2 extends model M1 by including also the design rules (two per item)
that were used to formulate each item.

• Model M3 is the full model that includes all effects (unless, of course, the testing
of its more restricted versions reveals otherwise). It allows to test if there results
any effect on difficulty or time intensity from the row wise, column wise, or row
and column wise organization of the rules.

3.4.4 Design Matrix

To construct the design matrix A for this study, the indicator variable approach
described earlier is used. Thereby, we used the information available from the item
writing process. The first variable is a 1 for all items, to reflect the incorporation
of the general mean for either difficulty or time intensity. The next two indicator
variables differ per item according to its perceptual organization. The second in-
dicator variable took the value of 1 for separated components, the value of 0 for
integrated components and the value of −1 for embedded components. Similarly,
the third variable took the value of 0 for separated components, the value of 1 for
integrated components and the value of −1 for embedded components. As a result,
the deviation from the base level γ0 for embedded components equals −γ1−γ2. For
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the eight design rules, an indicator variable was used that reflected if the design
rule was used to construct that item (denoted by a 1) or not (denoted by 0). For
the row wise, column wise and both column wise and row wise operations, two
indicator variables were constructed similar to the way the perceptual organization
of the items was modeled. Finally, a design matrix of dimension K × 13 was ob-
tained in this way, reflecting the full model M3. To fit model M2, the design matrix
can simply be restricted by specifying all row/column wise indicators to be 0. The
design matrix for M1 and M0 can be obtained similarly.

3.5 Analysis

In this section, the results of the analysis are discussed. First, estimation issues and
model fit are discussed, followed by the interpretation of the parameter estimates
obtained. Second, the hypotheses formulated above will be evaluated.

Estimation

Identification of the model is obtained by setting µP = (µθ, µζ) = (0, 0), specifying∏K
k=1 φk = 1 and σ2

θ = 1 (see the Gibbs sampling algorithm in the Appendix).
For estimation, vague proper priors were specified for the covariance components.
The priors for the means and regression coefficients were chosen to be 0, except
for the variance components µ

(a)
0 = µ

(φ)
0 = 1. First, model M0 was fitted to the

data, in order to assess model fit and evaluate the estimated correlation structures.
Subsequently, we fitted the other three models to the data. We used 12,000 iterations
of the algorithm to estimate the model.

The BOA package was used to asses convergence of the MCMC chains. Graphical
checks like autocorrelation, trace plots and estimated densities of the parameters are
easily assessable with this software. For illustration, Figure 6 shows the two trace
plots for the effect of the identity rule on difficulty and time intensity, respectively.
Several statistics to assess convergence that were provided by this package were
evaluated. Additionally, we used three runs with different random starting points
for model M0. The estimates from these three chains all converged to approximately
the same marginal densities, indicating that convergence was reached. Finally, the
estimated convergence statistics suggested to discard the first 1,200 iterations as
burn-in. The final estimates of the posterior means and variances of all model
parameters were therefore based on the last 10,000 iterations.

Model Fit

The fit of response model was assessed using posterior predictive checks. More
specifically, the observed score statistic was used to see if the fitted response model
was able to describe the observed response patterns. To check if the introduction
of an item discrimination parameter was necessary, the fit of the Rasch model was
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Fig. 3.6. Trace plots for the effect of the identity rule on difficulty (above) and time
intensity (below) under model M2.

compared with that of the 2-paramater normal ogive IRT model. 1,000 replicated
data sets under the posterior density were used to assess the fit of the model. The
observed score statistic evaluates the number of test takers with 0, . . . ,K items
correct. Figure 3.7 shows this statistic for the 2-parameter model, where the line
denotes the observed number of test takers with k correct items and the dots with
95% HPD intervals denote the summary of the 1,000 replications under the model.
It appeared that the Rasch model was unable to capture the observed data pat-
terns, but from Figure 7 can be seen that the 2-paramater normal ogive model
performed quite well. The odds ratio statistic pointed at some item combinations
where a possible dependency might exist (a p-value < 2.5 or > 97.5). However,
upon inspection of the data, these appeared to be very hard items with a relative
low proportion correct scores. Only for a low percentage of all the possible item
combinations (2.6 %) a significant p-value was found.

To test if there were any systematic patterns in the RT data that were not
captured by the model, the Bayesian residual check was used. Again, 1,000 iterations
of the Gibbs sampler were used to estimate the posterior probabilities as given by
Equation 3.27. Besides a graphical check of overall model fit, model fit was examined
for each item as well. From the figures it could be concluded that the underlying
distribution was very likely to be U(0, 1) distributed. No serious aberrant patterns
could be detected from these graphs.

Therefore, since no systematic aberrancies were found, it was concluded that
model fit was satisfactory for this data set.
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Fig. 3.7. Observed sum scores (line) and model predicted sum scores (dots with .95 HPD
regions).

Estimated Population Models

Before discussing the structural model on the item parameters, first the estimated
covariance structures under the null model M0 are discussed. This is of interest
because the covariance components between the various parameters reveal the de-
pendencies between the response model and the RT model. Table 3.1 gives the
posterior means (EAP) and posterior standard deviations (SD) for the variance
and covariance parameters of ΣP and ΣI . From the covariance components, the
correlation between the two parameters was estimated as well and is given in the
last column.

The population model of the latent traits θ, ζ (given by Equation 3.15) provides
us with information about the relationship between ability and speed of test takers.
Note that the variance component for ability was fixed because of the indentifica-
tion restrictions. The estimated correlation between ability and speed was strongly
negative (-.61). Interestingly, this tells us that in general it were the higher ability
candidates who took more time to solve the items.

Similarly, the estimates for ΣI contain information about the items in the test.
From Table 3.1 can be seen that the most significant correlations between the item
parameters are between the discrimination parameters a and item difficulty b (-
.61), between discrimination parameter a and time intensity λ (-.54) and between
difficulty b and time intensity λ (.68). So the more difficult items tend to be more
time consuming as well, which is in line with the common assumption that the
more complex cognitive reasoning items require more processing steps by the test
taker. From the correlation with the a parameters it follows that the more difficult
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and more time intensive items tend to discriminate less between test takers with
different abilities.

Table 3.1. Estimated covariance components and correlations, obtained for model M0.

Variance components EAP SD cor

ΣP

σ2
θ 1.00 - 1.00

ρ −.30 0.01 -.61
σ2

ζ 0.24 0.01 1.00

ΣI

σ2
a 0.10 0.01 1.00

σab −.17 0.03 −.61
σaφ 0.01 0.01 −.02
σaλ −.05 0.01 −.54
σ2

b 0.71 0.08 1.00
σbφ −.01 0.02 −.05
σbλ 0.19 0.04 .68
σ2

φ 0.05 .01 1.00
σφλ 0.01 .01 .15
σλ 0.10 0.01 1.00

Testing Hypotheses

To assess to which extent the perceptual organization, the specific construction rules
and the organization along rows and columns contribute to the difficulty and time
intensity of the items, the four models will be evaluated against each other. The
estimated Bayes Factors and R2 statistics for the four models are given in Table 3.2.
The Bayes factor was estimated for models M0−M2 against model M3. That is, for
model M2 the density ratio BF23 = p(y|M2)

p(y|M3)
was estimated to be BF23 ≈ exp(46).

The Bayes factor thus strongly favors model M2 over the larger model M3. On
the other hand, the Bayes factor clearly rejects the two other hypotheses. From
these results can be concluded that perceptual organization of the items as well as
the item construction rules used provide us with information about the difficulty
and time intensity of the items. However, based on this data set we have to reject
the hypothesis that the row wise versus colum wise organization of the design rules
affects item difficulty or time intensity. Moreover, the estimated R2 statistics appear
to be in line with the estimated Bayes factors. That it, the proportion explained
variance increases from M0 to M3. However, the R2 statistic improves only slightly
from model M2 to model M3, which also gives us an indication that the row wise and
column wise operations do not contribute much to difficulty and time intensity of
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the items. Since row wise versus column wise operations concerns an easy rotation
(left-right versus up-down) and not, for instance, the rotation of a complex 3D-
object, it seems plausible to assume that such items are both equally difficult and
time consuming. Regarding these results, we will proceed assuming that model M2

is the appropriate choice.

Table 3.2. Estimated proportions of explained variance and Bayes factors for the models
M0 - M3.

Model R2(b) R2(λ) Bayes factor

M0 0.00 0.00 exp(−7)
M1 0.13 0.08 exp(−5)
M2 0.34 0.37 exp(46)
M3 0.37 0.39 exp(0)

Estimated Effects

The estimated effects for model M2 can be found in Table 3.3. From the Highest
Posterior Density (HPD) (see Box & Tiao, 1973, pp. 123) regions of the estimated
parameters can be seen that for item difficulty, the effects of integrated and embed-
ded components and the effects for the identity, intersection and unique addition
rules significantly deviate from 0. Regarding item time intensity, for the effect for
separated components and the effects of identity, unique addition, seriation and
variation of closed gestalts, 0 is not contained in their .95 HPD region. These re-
sults imply that applying these specific rules results in a deviation from the overall
mean of item difficulty and/or time intensity. For example, when looking at the use
of the identity rule to construct a new item, it can be expected that this item is
less difficult and also less time consuming than the ”mean item” in the test. Note
that estimated effects of the other ’non-significant rules’ should not be ignored, but
interpreted as a set of rules leading to approximately equal response times (or equal
item difficulties, respectively).

Regarding the relative high correlation between item difficulty and item time
intensity, it would be expected that the estimated regression effects on both param-
eters also show dependencies. Indeed, in Figure 3.8 below, a plot of the effects for
item time intensity against the estimated effects for item difficulty shows a positive
trend as well. As expected, items with embedded components appeared to be the
most difficult and time intensive, compared to items with integrated or separated
components. So item construction rules with a positive effect on difficulty also lead
to higher expected response times. These findings are in line with finding that
more information requires more working memory capacity and additionally results
in longer response times (Embretson, 1998).

It is interesting to evaluate the estimated effects on time intensity on the time
scale since this gives us results that are more intuitive to interpret. For model
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Table 3.3. Estimated effects and .95 HPD regions for model M2.

Difficulty (b) Time intensity (λ)

Effect EAP .95 HPD EAP .95 HPD

µ (intercept) 0.33 [−.15, 0.59] 4.01 [3.88, 4.15]
γ1 (separated) -.14 [−.29, 0.02] -.02 [−.07, 0.02]
γ2 (integrated) -.18 [−.31,−.04] -.09 [−.14, 0.05]
γ3 (embedded) 0.33 [0.17, 0.47] 0.11 [0.06, 0.17]
γ4 (identity) -.63 [−.93,−.34] -.26 [−.36,−.14]
γ5 (addition) 0.22 [−.05, 0.51] 0.00 [−.10, 0.11]
γ6 (substraction) 0.17 [−.12, 0.45] 0.02 [−.08, 0.12]
γ7 (intersection) 0.47 [0.16, 0.77] 0.08 [−.04, 0.18]
γ8 (unique addition) 0.42 [0.13, 0.70] 0.17 [0.06, 0.27]
γ9 (seriation) -.06 [−.35, 0.22] -.10 [−.21, 0.00]
γ10 (variation of closed gestalts) -.05 [−.31, 0.21] -.11 [−.21,−.02]
γ11 (variation of open gestalts) 0.05 [−.25, 0.33] 0.01 [−.11, 0.10]
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Fig. 3.8. EAP’s of the effects of the item construction rules on item difficulty against
their effects on time intensity for model M2.

M2 the estimates for the mean were γ
(λ)
0 = 4.01 and for the variance σ̂2

λ = .07.
The inverse transformation to the time scale is then given by exp(λ̂ + σ̂2

λ/2) =
exp(4.01 + .07/2) = 57 seconds. Now, take the effect of the identity rule, which
is the rule with the strongest effect on the time intensity of an item. On the time
scale, the difference in expected response times between an ”identity item” and a
”mean item” and would be:
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exp(γ̂0+γ̂1+σ̂2/2)−exp(γ̂0+σ̂2/2) = exp(4.01−0.25+.04)−exp(4.01+.04) = −12 seconds.

Similarly, consider the most extreme deviation from the mean time intensity, which
can be obtained by constructing a hypothetical item using identity, seriation and
variation of closed gestalts. This leads to a difference in expected response time of
-20 seconds. It is also interesting to evaluate the easiest and most difficult item in
the subset. For the easiest item, λ̂ = 2.99, while for the most difficult item we found
that λ̂ = 3.52. On the time scale, this leads to a difference in expected response
times of 14 seconds. Although this result might appear small when focusing on a
single item, the effects can become large when longer tests (e.g., 20 or more items)
are investigated.

3.6 Discussion

The aim of this chapter was to show that an IRT-based approach to response
times (RTs) can contribute to the evaluation and testing of the cognitive theory
underlying tests with a rule-based design. In the context of educational testing, it
was argued that RTs may be described by both item and person parameters. By
correcting for the speed of individual test takers, it is possible to reveal systematic
differences between the items in a test, which were modeled by item discrimination
and time intensity parameters, respectively.

The hierarchical modeling allowed us to study observed correlations between re-
sponses and RTs. Dependencies might arise because of a relationship between ability
and speed of test takers, which was modeled at the second level by a population
model for the test takers. A population model for the item parameters modeled
similar possible dependencies but between the item characteristics of the two level
1 models. The extension of the population model for the item parameters with a
structural component enabled us to relate content specific information about items
to the observed differences in their estimated difficulty and time intensity parame-
ters.

The approach worked well for dissociating item difficulty and time intensity as
a function of the underlying rule based design of the test. That only a proportion
of variance in difficulty and time intensity was explained can be attributed to the
limited amount of information on the items that was included in the model. The
analysis was restricted to the inclusion of effects for perceptual organization, the
design rules and row wise and column wise operations. Moreover, these effects were
assumed to be independent and additive. As a result, the model lacked a descrip-
tion of possible interactions between rules and perceptual organization. Information
regarding the complexity of figures was not included either. That is, items can be
similar in structure (the rules used), but different in their symbols and figures. It
is reasonable to suspect that difficulty and time intensity also depend on such item
features.

In the example, both time intensity as well as item difficulty parameters were
decomposed using the same design matrix. However, this condition is not manda-
tory. A strong cognitive theory might well propose different design matrices for
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item difficulty and time intensity parameters, respectively. Further, the model can
be applied to existing tests with a reconstructed design matrix as well. Reconstruc-
tion of the design matrix can occur, for example, by consulting experts for the test
who carefully inspect the items.

The model combines discrete and continuous data sources from the same test.
This enhances the possibilities for the researcher, but brings along computational
difficulties as well. However, the Bayesian treatment of the model, using MCMC
methods, is able to deal with these issues. Although computationally intensive, the
MCMC approach has several advantages that reside in its flexibility. For instance,
the user is not limited to pre-programmed (model fit) statistics but can easily
compute his/her own statistics of interest from the samples of the MCMC chain.
With the developed software it is just as well possible to include continuous variables
related to item content. Think of, for instance, regressing the item parameters on
the number of words used to formulate them.

Extensions of the model can be implemented as an additional sampling step,
without having to develop an entirely new algorithm. For example, we assumed uni-
dimensionality in both ability and speed of the test takers. To relax this assumption,
the model could be extended towards multidimensional IRT models (Adams, Wil-
son, & Wang, 1997; Embretson, 1997). Accordingly, one might assume that the
latent speed of a person is multidimensional as well. Furthermore, it is possible
that subgroups of test takers follow different solution strategies. For example, in a
spatial rotation test, test takers might use a mental rotation strategy or an ana-
lytical strategy for detecting feature matches that do not require mental rotation
(Mislevy & Verhelst, 1990). Mixture modeling approaches that deal with such cases
can be found in Mislevy and Verhelst (1990) and Rost (1990).

Other practical implications of the proposed method relate to item and test con-
struction. A test is developed in order to measure a specific construct, for instance,
mathematical ability. For construction of a test, item selection is primarily based
on the information function of the items. The information functions describes how
well an item measures the ability of interest and how well it covers the ability range.
Using the item information functions allows the optimal design of item subsets or
tests in order to measure the ability of test takers up to a certain accuracy. RT
information and, more specifically, the time intensity of an item now provides a
second item selection criterion. It is possible to select a group of items so as to
minimize the time intensity of the complete set. This would not only minimize the
number of items needed to measure ability, but minimize test length with respect
to time as well. Such applications could be interesting for computerized adaptive
testing (CAT). In CAT, an adaptive algorithm is used that selects a new item based
on the ability of a test taker estimated from the previously presented items. These
CAT algorithms minimize the number of items needed to measure ability up to a
specified accuracy. A second optimization of the algorithm would now be possible
with respect to total test time.

However, if item writing can be based on cognitive theory, test construction can
be done in a more structured way. With the methods proposed in this chapter, a
thorough assessment of how cognitive operations affect task difficulty as well as
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time intensity becomes feasible. Revealing the differences in the time intensities
of tasks provides more detailed insight in their cognitive demands. Thereby, RTs
provide tools to evaluate a cognitive theory more thoroughly. This can give a better
understanding of the relationships between item characteristics and item content.

3.7 Appendix: Estimation

The model can be identified by setting the means of the person parameters (θ, ζ)
to zero, so that µP = 0 and restricting the variance of θ to 1, so σ2

θ = 1. Fox et
al. (2007) provided a Gibbs sampling solution where these identifying restrictions
are directly included into the prior distributions. The same authors describe a
straightforward and efficient Gibbs sampling scheme for the hierarchical model,
except for a step for sampling the design effects γ of the item parameters. Therefore,
the sampling steps will be described below, but only the sampling step for the design
effects is given explicitly here.

• Step 1 Sample augmented response data according to Equation 3.12.
• Step 2 Draw (θi, ζi) simultaneously from θi, ζi|zi, ti,a, b,φ,λ,µP ,ΣP .
• Step 3 Draw (µP ,ΣP ) from µP ,ΣP |θ, ζ,ΣP0,µP0, where ΣP0,µP0 denote

the hyperprior parameters
• Step 4 Draw (ak, bk, φk, λk) from ak, bk, φk, λk|zk, tk,θ, ζ,γ,ΣI

• Step 5 Draw ΣI from ΣI |a, b,φ,λ,γ,ΣI0

• Step 6 Draw γ|A,a, b,φ,λ,γ0,Σγ0 This step is specified below.

Let γ = vec
(
γ(a),γ(b),γ(φ),γ(λ)

)
and ΩI = (a, b, φ, λ), where vec denotes the

operation of vectorizing a matrix. Furthermore, let AI = (I4 ⊗ A). This enables
rewriting Equations 3.21 - 3.24 to:

vec(ΩI) = AIγ + vec(e), (3.33)

where vec(e) ∼ N(0,ΣI ⊗ IK). Next, a conjugate normal prior is chosen for γ:

γ ∼ N(γ0,Σγ0) (3.34)

Subsequently, it follows that the posterior distribution is again normal:

γ|AI ,ΩI ,ΣI ,γ0,Σγ0 ∼ N

Σ̂
−1

γ γ̂ + Σ−1
γ0

γ0

Σ̂
−1

γ + Σ−1
γ0

,
(
Σ̂
−1

γ + Σ−1
γ0

)−1

 , (3.35)

where Σ̂γ and γ̂ are the common least squares estimates, which can be derived
from Equation 3.33. For Gibbs sampling of the other model parameters, see Fox et
al. (2007).
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A Box-Cox Normal Model for Response Times

Summary. The log-transform has been a convenient choice in response time modeling on
test items. However, motivated by a dataset of the Medical College Admission Test where
the lognormal model violated the normality assumption, the possibilities of the broader
class of Box-Cox transformations for response time modeling are investigated. After an
introduction and an outline of a broader framework for analyzing responses and response
times simultaneously, the performance of a Box-Cox normal model for describing response
times is investigated using simulation studies and a real data example. A transformation-
invariant implementation of the Deviance Information Criterium (DIC) is developed that
allows for comparing model fit between models with different transformation parameters.
Showing an enhanced description of the shape of the response time distributions, its ap-
plication in an educational measurement context is discussed extensively.

4.1 Introduction

Recording response times (RTs) on test items is common practice nowadays.
Thereby, besides the response patterns, an additional source of information is avail-
able to test developers and testing agencies. For instance, RTs can be helpful to
improve the design of a test or study the response behavior of test takers. How-
ever, an appropriate statistical treatment of the RTs is required before making any
inferences.

Response time experiments have been a major source of inferences about cog-
nitive processes in experimental psychology (Luce, 1986). To illustrate the type
of experiments and the kind of data that arise from them, we give the following
three examples. Schmiedek et al. (2007) performed experiments using simple speed
tasks to study attention fluctuation and working memory. One of the experiments
reported by these authors was a verbal classification task where participants had to
classify single words into categories of animals or plants. Ratcliff and Rouder (1998)
performed experiments to study stimulus discrimination, where participants had to
classify the intensity of an array of pixels on a monitor as high or low. An example of
a time pressure study of the well known speed-accuracy tradeoff can be found in van
der Lubbe, Jaśkowski, Wauschkuhn, and Verleger (2001). There, participants had
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to respond before the space between an inner circle and an outer circle was filled.
Typically, experiments like these consist of many repetitions of the same simple
task. The data that arise from such experiments are the RTs (usually in the order
of milliseconds) and accuracy measures (correct/incorrect). For the joint analysis of
RT and accuracy data traditional ANOVA methods have been used up till recently
(van der Lubbe et al., 2001), with inferences based on the mean RTs and the mean
proportion correct (PC) scores. An approach that provides more detail into the
analysis and relates RTs and accuracy explicitly is the diffusion model presented
by Ratcliff (1978). For more recent references and approaches that are related to
the diffusion model see, for instance, Ratcliff and Tuerlinckx (2002); Wagenmakers,
van der Maas, and Grasman (2007) and Brown and Heathcote (2008).

In educational assessment, measurement had to be based on response accuracy
only for a long time. This limitation was overcome with the introduction of com-
puterized test adminstration, which made the accurate collection of RTs feasible.
Thereby, an additional source of information on test items and test takers has be-
come available. For instance, when students are not motivated for a test, this might
lead to lower RTs as a result of guessing behavior, something that cannot be easily
seen from accuracy data alone. Therefore, there is a need to incorporate RTs into
the analysis of test data and study responses and RTs simultaneously. However,
there are some important differences in the data collection process compared to the
procedures in experimental psychology. First, in experimental psychology the RTs
are linked directly to theoretical cognitive phenomena which are evaluated, for in-
stance, using elementary two-choice tasks, whereas in educational measurement the
tasks (items) are of a much higher cognitive complexity. As a result, the observed
RTs are in the range of seconds up to some minutes. Where experiments measured
in milliseconds need to take account of a lower bound on the RTs, this can safely
be ignored in educational measurement due to the size of the measurements. Also,
in educational assessment multiple items are administered that are answered only
once, contrary to the within-subject replications found in experimental psychology.
These differences lead to a somewhat different approach to the joint modeling of
RTs and accuracy data on test items than that mentioned above.

In educational testing, item response theory (IRT) models have served as mea-
surement models for a latent construct, ability, which is assumed to underly the
accuracy data. Very different from the diffusion model, RTs are not included in IRT
models. Instead, it will be assumed that individual differences between test takers in
their observed RTs result from differences in speed. That is, speed will be assumed
to be the latent construct underlying the RTs and a separate measurement model
is required for measuring it. At a higher (second) level the relationships between
the two measurement models are modeled to account for possible dependencies be-
tween the RTs and the accuracy data. This leads to a framework of modeling that
allows for the simultaneous analysis of RTs and accuracy data on test items. IRT
models have been well developed, but models for RTs have had much less attention
in the psychometric literature. In this paper, motivated by an empirical problem,
we focus on models for RTs that are flexible in their distributional shapes and fit
well into the framework for the simultaneous analysis of responses and RTs.
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Typically, RTs are non-negative and, as a result, their distribution is positively
skewed. Various types of distributions are able to describe such data and have been
extensively studied, for instance, in the field of lifetime modeling. Examples are the
Poisson, Gamma, Weibull, inverse normal, exponential and lognormal distributions.
For discussions on the use of these distributions for modeling RTs in psychometric
applications, the reader is referred to Maris (1993); Roskam (1997); Rouder et al.
(2003); Thissen (1983); van Breukelen (1995); Schnipke and Scrams (1997, 2002);
van der Linden (2006). In practice, it is difficult to determine which distribution
would fit the RT data best. The lognormal model has been a convenient choice,
with good results regarding model fit (Thissen, 1983; Schnipke & Scrams, 1997;
van der Linden et al., 1999; van der Linden, 2006). Besides, it permits the use of
the nice statistical properties of a normal model for the log-transformed RTs. A
normal model easily allows for a decomposition of the mean into item and person
effects. van der Linden (2006) introduced a lognormal model for describing response
times.

Nevertheless, the analysis of a computerized version of the Medical College Ad-
mission Test (MCAT) revealed that the log-transformed RTs do not always satisfy
the normality assumption (Section 4.6.2). A Bayesian residual analysis indicated
that the skewness of the RT distributions was not always captured well for the
MCAT data. In such cases, it would be desirable to evaluate the fit of the model
against other distributions. For instance, a Gamma model might be more appro-
priate for describing the structure of the skewness Maris (1993). But, fitting and
evaluating different RT models can be laborious and is not desirable from a practi-
cal perspective. A more general approach for describing any RT distribution would
be preferred.

The Box-Cox transformation has been widely used to model skewed distribu-
tions. For instance, it finds application in life time / failure time models in industry
or in the empirical determination of functional relationships in the field of eco-
nomics. Nonetheless, as far as known by the authors, it has not found application
in the psychometric literature of response time modeling. Therefore, the class of
Box-Cox transformations is considered in this study. Using a whole class of trans-
formations gives the researcher more freedom in analyzing response time data. It
allows one to choose an appropriate transformation in order to obtain normally dis-
tributed data. Box and Cox (1964) proposed a power transformation as a function
of an unknown parameter ν, which contains the log-transform as a special case:

T (ν) =
{

T ν−1
ν (ν 6= 0),

log Tik (ν = 0),
(4.1)

where T denotes the original time and T (ν) denotes the Box-Cox transformed time.
Note that the log transform for ν = 0 is defined in order to obtain a family of
transformations over a continuous range of ν.

To illustrate the flexibility in shape of the Box-Cox density, consider response
times T that follow a Box-Cox normal density with parameters (ν, λ, τ2), where
ν 6= 0, given by:
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f(t) = t(ν−1) 1√
2πτ2

exp

(
−1

2

(
t(ν) − λ

τ

)2
)

(4.2)

An impression of the different shapes this density can take is shown in Figure 4.1.
For (λ, τ) = (6, 1), the density f(t) is plotted for some values of ν ∈ (0, 1] over a
range of T ∈ [0, 80].
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Fig. 4.1. Box-Cox normal densities as a function of the transformation parameter νε(0, 1]
and with fixed mean and variance λ = 6, τ2 = 1. The density with the leftmost and
highest peak is ν = .05, the flattest density is the one with ν = 1

Besides flexibility, it is interesting to evaluate its benefits with respect to model
fit as well as the interpretation of the parameters and its behavior in a larger
framework for the simultaneous analysis of responses and RTs. Below, the modeling
framework is introduced first, followed by the method of estimation. Thereafter, the
problem of how to obtain the moments of the Box-Cox distribution is discussed.
These moments are helpful to characterize, for instance, the skewness of the RT
distributions. The presentation of a few tools for evaluating the fit of the model is
then followed by empirical examples as well as simulation studies that address the
research questions above. A discussion of the advantages and disadvantages of the
Box-Cox approach for modeling RTs concludes this paper.
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4.2 A Framework for the Simultaneous Analysis of
Responses and Response Times

The interest of researchers is often focussed on studying responses or response times
alone. However, since both data sources contain information on the same items and
test takers, it can be advantageous to study them simultaneously. For instance, the
interest may be in the relationship between speed and accuracy of test takers or
the testing of the common assumption that more difficult items also are more time
intensive. Therefore, a framework that allows for modeling dependencies between
responses and RTs is outlined here.

Measurement models at level 1 separate the variability in the observed responses
and response times into item and person effects. Just as ability, the speed of the
test takers is assumed to be the underlying construct for the RTs. Further, it is
assumed that speed and ability of the test takers are fixed during the test. This
assumption leads to conditional independence of the responses and response times
of a test taker given the latent traits, which is a key feature of this model. At
level 2, a correlation structure models the dependencies between the level 1 model
parameters.

Not only can the Box-Cox normal model improve the description of the skewness
of the data but, due to the transformation to normality, it also fits this hierarchical
framework nicely. Contrary to a Weibull or Gamma RT model, the BC model allows
the use of easy to implement conjugate normal models for the item and person
parameters at level 2, which enables a straightforward Gibbs sampling approach
for estimation of the model parameters as well.

4.2.1 Response Model

In IRT, it is assumed that the variability in observed response patterns on test
items can be separated into item and person effects. Within an item, the variability
between the responses of different test takers is the results from differences in their
ability, denoted by θ. The higher one’s ability, the higher the probability of giving a
correct response. Within a test, there are differences between items regarding their
difficulty. The probability that a test taker answers an item correctly depends on
the difference between the difficulty b of the item and his or her ability. The way
the item distinguishes between test takers of different ability is described by the
discrimination parameter a.

Assuming that the probability that person i = 1, . . . , N answers item k =
1, . . . ,K correctly (Yik = 1) follows the two-parameter normal ogive model,

P (Yik = 1|ak, θi, bk) = Φ(akθi − bk), (4.3)

or, in its latent response formulation,

P (Yik = 1|ak, θi, bk) =
∫ ∞

0

P (zik; akθi − bk)dz, (4.4)

where Zik ≥ 0 when Yik = 1 and Zik < 0 otherwise. The model is given in its latent
variable form for computational convenience, as introduced by Albert (1992).
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4.2.2 Response-Time Model

Analogously, it is assumed that the variability in observed response time patterns
on test items can be separated into item and person effects. For instance, it never
happens that a group of test takers finish the test in the same time. Some persons
are working faster than others. This leads to the assumption that, within an item,
the variability in response times results from differences in speed of working of the
test takers. Therefore, a personality trait for speed is introduced, denoted by ζ.
That is, the speed parameter is assumed to be the underlying construct for the
RTs, just as the ability parameter is for the responses. It is assumed that during a
test, a person works at a fixed speed. In general, within a test, test takers do not
spent equal time on the items. Some items require more time to be solved (it is
often assumed that this concerns the more difficult items). As an example, solving
2 + 5 =? involves less steps than solving 2 + 5 + 7 =? and, therefore, it can be
expected that the latter is more time intensive. For representing these differences
in time intensity of items, an item parameter λ is introduced. This parameter can
be seen as the time-analogue of the difficulty parameter. The parameter φ reflects
the way the item distinguishes between test takers of different speed levels.

The generalization to a Box-Cox normal model then leads to a linear model for
the transformed RTs:

T (ν) =
{

T ν
ik−1
ν ∼ N(−φkζi + λk, τ2

k ) (ν 6= 0),
log Tik ∼ N(−φkζi + λk, τ2

k ) (ν = 0).
(4.5)

For notational convenience, the superscript will be dropped and Tik will denote the
Box-Cox transformed time from now on.

4.2.3 Second-Level Models

At the second level of modeling, the person parameters are assumed to follow a
multivariate normal distribution. Let ξi = (θi, ζi), then:

ξi = µP + eP , eP ∼ N(0,ΣP ), (4.6)

where µP = (µθ, µζ) and the covariance structure is specified by:

ΣP =
[

σ2
θ ρ
ρ σ2

ζ

]
. (4.7)

Here, ρ denotes the covariance between the two person parameters. A positive
estimate for ρ indicates a positive dependence between ability and speed, meaning
that a person who works faster than average also tends to have an above-average
ability.

Similarly, it can be assumed that the item parameters follow a multivariate
normal distribution. Let Ωk = (ak, bk, φk, λk), then:

Ωk = µI + eI , eI ∼ N(0,ΣI), (4.8)
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where µI = (µa, µb, µφ, µλ) and the covariance structure is specified by:

ΣI =


σ2

a σab σaφ σaλ

σba σ2
b σbφ σbλ

σφa σφb σ2
φ σφλ

σλa σλb σλφ σ2
λ

 . (4.9)

This covariance structure allows for the investigation of dependencies between the
item parameters. For instance, one can test the common assumption that more dif-
ficult items also take more time to be solved. Doing so would amount to evaluating
the null hypothesis H0 : σbλ = 0 against the alternative Ha : σbλ > 0.

4.3 Bayesian Estimation Using MCMC Methods

The model is estimated using a fully Bayesian approach using straightforward
Markov Chain Monte Carlo (MCMC) methods. In a Bayesian approach, inferences
are made from the posterior distribution p(θ|x). Using Bayes’ rule, the posterior
is obtained from the observed data x, a realization of X ∼ f(x|θ), combined with
available prior information, specified as p(θ). An introduction to Bayesian inference
can be found, for instance, in Box and Tiao (1973).

Estimation of the posterior distributions of the model parameters requires eval-
uating integrals, which, analytically, for complex models, can be an impossible
task. A solution to this problem is to use simulations to approximate the densities.
Markov Chain Monte Carlo methods, such as the Gibbs sampler (Geman & Ge-
man, 1984) and the Metropolis-Hastings algorithm (Chib & Greenberg, 1998), are
useful for drawing samples from the posterior distributions of the model param-
eters. Although computationally intensive, these methods remain straightforward
when model complexity increases. Gelman et al. (2004) provide an introduction to
MCMC methods; a more advanced text is Robert and Casella (1999).

Since our interest is in the Box-Cox normal RT model, the sampling steps for
the transformation parameter and the RT model parameters are given explicitly
below. Sampling of the other model parameters is outlined in the Appendix.

Identification

The response time model can be identified by setting E(ζ) = 0, which fixes the
mean. By specifying

∏K
k=1 φk = 1, a tradeoff between σ2

ζ and φk is avoided. Iden-
tification of the hierarchical model can be obtained by fixing the location of the
latent traits by µP = 0. Further, the scale of the ability trait can be fixed in two
ways: either by setting σ2

θ = 1 or by setting
∏K

k=1 ak = 1.

Sampling the Box-Cox Parameter

A normal model for the transformed response times is assumed. The likelihood with
respect to the original response times is given by:
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p(t|ν)J(ν, t∗), (4.10)

where t∗ denotes the original response times and J(ν, t∗) the Jacobian of the trans-
formation. For ν = 0, the Jacobian equals t∗−1; when ν 6= 0, it equals t∗(ν−1).
Different priors for ν were studied by Box and Cox (1964), However, these were
outcome dependent; that is, they were was dependent on the observations. Per-
icchi (1981) did propose non-informative priors for the transformation parameter
that where not outcome dependent. However, these priors were derived in order to
obtain analytic results on the value of ν.

A main problem is that there does not seem to exist a conjugate prior for ν (as
far as known by the authors), so a Gibbs sampling step for the parameter is not
feasible. However, for a sampling based approach, the choice of a family of priors
is less critical. For that reason a Metropolis-Hastings (MH) step is proposed, the
advantage being that any chosen prior for ν is easily implemented in the MH-step.
At iteration m, a new value ν∗, sampled from a proposal density ϕ(ν∗|ν), is accepted
with probability:

min
{

1,
p(ν∗|t)

p(νm−1|t)
× ϕ(νm−1|ν∗)

ϕ(ν∗|νm−1)

}
, (4.11)

otherwise νm = νm−1.
When the optimal transformation is the logartihm, the distribution should con-

verge to E(ν) = 0. However, although a posterior mean of approximately 0 can be
obtained, a value of ν(m) = 0 will practically never be sampled since it has prob-
ability 0. To accommodate for the log-transform, consider a critical value C such
that when |ν(m)| < C, then ν(m) = 0 with probability .5. Tuning of the value of C
is required, whereby (based on our experience) a value of .05 can be considered a
good starting point.

Sampling the Item and Person Parameters

Below the conditional posterior distributions of the person and items parameters of
the RT model are presented. Together with the sampling step for the transformation
parameter, these steps constitute the MCMC algorithm for the RT model.

• The person speed parameters ζ are the parameters of the linear regression of
−Ti + λ on φ. Assuming a normal prior ζi ∼ N(µζ , σ

2
ζ ), the resulting posterior

is again normal with

ζi|ti,φ,λ, τ 2, ν ∼ N

(
σ−2

ζ µζ +
∑K

k=1 τ−2
k φk(λk − tik)

σ−2
ζ +

∑K
k=1 φ2

kτ−2
k

, (σ−2
ζ +

K∑
k=1

φ2
kτ−2

k )−1

)
(4.12)

• The item parameters (φ,λ) are the coefficients of the regression of Tk on
X = (−ζ,1). Assuming a normal prior, φk, λk ∼ N(µφ,λ,Σφ,λ), the posterior
distribution is given by:
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φk, λk|tk, τ2
k , ζ, ν ∼ N

(
Σ−1

φ,λµφ,λ + τ−2
k Xttk

Σ−1
φ,λ + XtXτ−2

k

, (Σ−1
φ,λ + XtXτ−2

k )−1

)
(4.13)

• For the residual variance τ2
k , a conjugate inverse Gamma prior with parameters

Inv−Gamma(g1, g2) is assumed. The posterior is then again an inverse Gamma
distribution with parameter g1 + N/2 and scale parameter g2 + (tk − (−φkζ +
λk))t(tk − (−φkζ + λk))/2.

4.4 Moments of the Response-Time Distributions

We will use the first three moments about zero of the distributions to assess the
differences between the lognormal and Box-Cox normal models. More specifically, it
is expected that these models will differ in their third moment, which characterizes
the skewness of the distribution. Therefore, only the estimation of the first three
moments of the distributions is considered in this study.

How to obtain the moments of the lognormal distribution is well known. How-
ever, the moments of the Box-Cox normal distribution are not so straightforward to
estimate, except for some specific transformations, such as ν = 2 or ν = .5. Freeman
and Modarres (2006) studied the properties of the inverse Box-Cox transformation.
Let Y = (Xν − 1)/ν, Z = (Y − µ)/σ and Y ∼ N(µ, σ2). Then X is power-normal
distributed, or X ∼ PN(ν, µ, σ2). The authors derived the rth moment of X as

E(Xr) = (νµ + 1)r/ν +
∞∑

i=1

1
i!

(νµ + 1)r/ν−iσiE(Zi)
i−1∏
j=0

(r − jν), (4.14)

for ν 6= 0. Moreover, they showed that these moments can be approximated by
E(Xr) ≈ (νµ+1)r/ν +

∑
Even i>0

σi

2i/2(i/2)!
(νµ+1)r/ν−iE(Zi)

∏i−1
j=0(r− jν), where

i > 0 and even. When ν = 0 the moments of the lognormal distribution can be
approximated by E(Xr) = exp(rµ+ r2σ2

2 ). These results will be used to approximate
the moments of the distributions.

From these raw moments, the second central moment, which corresponds to the
variance, and the third standardized moment, which is a measure for the skewness
of the distribution, are obtained.

4.5 Evaluating Model Fit

Model fit will be evaluated using two methods: (i) Baysian residual analysis by eval-
uating the posterior probabilities under the model, and (ii) a Deviance Information
Criterion (DIC).

The transformed values tij are evaluated under their predictive density under
the RT model. Subsequently, the probability P (Tik < tik|y, t) can be approximated
by
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P (Tik < tik|y, t) ≈
M∑

m=0

Φ
(
tik|ζ(m)

i , φ
(m)
k , λ

(m)
k , ν

(m)
k

)
/M (4.15)

from the M iterations of the MCMC chain. Now, the probability integral transfor-
mation theorem (e.g., Casella & Berger, 2002) implies that under the true model
these probabilities are distributed as U(0, 1). This feature allows evaluation of the
model fit. To do so, the calculated probabilities of the items are plotted against
their expected values under the U(0, 1) distribution. If the underlying distribution
really is U(0, 1), these plots should be approximately linear.

Graphical model checking can be very helpful to understand in what way a fitted
model departs from the data. However, graphical comparison of two competing
models can be difficult when they are close. Also, the proposed graphical check does
not penalize for model complexity. Therefore, the DIC (Spiegelhalter et al., 2002),
which does account for model complexity, should be estimated as well. Besides being
a useful test statistic for model comparison, it has the advantage that it is easily
obtained as a by-product of the MCMC chain.

The deviance D(t,φ,λ, ν, ζ) is given by:

D(t,φ,λ, ν, ζ) = −2 log p(t|φ,λ, ν, ζ) (4.16)

= N
K∑

k=1

log(2πτ2
k ) +

K∑
k=1

N∑
i=1

(tik − (−φkζi + λk))2/τ2
k

+
K∑

k=1

N∑
i=1

log Jik, (4.17)

where Jik denotes the Jacobian of the transformation, which is (t∗ik)−1 when ν = 0
and (t∗ik)(νk−1) when νk 6= 0, with t∗ik the original observation. The DIC is equal to
the deviance plus a penalty term for model complexity, and is given by:

DIC = D̄ + (D̄ − D̂), (4.18)

with D̄ ≈ 1
M

∑M
m=1 D(t,φ(m),λ(m), ν(m), ζ(m)), m = 1, . . . ,M denoting the num-

ber of iterations of the algorithm, and D̂ ≈ E(D(t,φ(m),λ, ν, ζ)|t∗). Spiegelhalter
et al. (2002) report that when using the posterior median instead of the posterior
mean to estimate the DIC, the term for model complexity is invariant to transfor-
mations. However, the DIC is constructed from a likelihood-based term plus the
correction for model complexity. Different transformations lead to different scales
of the data and thereby affect the likelihood. The Jacobian of the transformation
is to guarantee that all DIC values correspond to one common scale (=the original
time scale). As a result, this DIC allows the comparison of model fit for different
transformations.

4.6 Flexibility of the Box-Cox Normal Model

To illustrate the possibilities of the Box-Cox approach for modeling response times
on test items, two examples are given here. In the first example, it will be shown that
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the Box-Cox normal model can approximate data resulting from Weibull, Gamma
and Exponential models. The second example analyzes an empirical data set and
shows that model fit can be improved when the lognormal model is generalized to
a Box-Cox normal model.

4.6.1 Approximation of Weibull, Gamma and Exponential Data

Aim of this example is to show that if the true underlying distribution of the RTs
is Gamma, Weibull or Exponential, the Box-Cox normal distribution can be a good
approximation to the RTs.

For our example, we used the empirical mean and variance of the RTs of three
items: The first was obtained from a Raven test taken by 300 German army recruits
for which (mean, var) = (64, 1766). The second was from a computerized version of
the MCAT for which (mean, var) = (190, 4904) seconds. Rouder et al. (2003) used
a Weibull distribution to model reaction times and report a typical estimate for
the shape parameter of 2. This value was used for the third item. The parameters
for the Gamma, Weibull and Exponential distribution were chosen such that they
corresponded closely with the estimated means and variances of the selected items.
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Fig. 4.2. Density of the Gamma(3, .05) function, its lognormal, and its Box-Cox normal
approximation.

Subsequently, 10,000 data points were simulated under these models, and the
Box-Cox normal model was fitted to the data. From the obtained parameter es-
timates of the Box-Cox normal model, the density function was plotted together
with the density function of the true underlying distribution. In the same figures,
the lognormal density was plotted; see Figures 4.2 - 4.4. Furthermore, estimates
of the DIC criterion as well as the moments of these distributions were obtained.
Table 4.1 summarizes the results.
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Fig. 4.3. Density of the Exponential(1/64) function, its lognormal, and its Box-Cox
normal approximation.
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Fig. 4.4. Density of the Weibull(2, 5) function, its lognormal, and its Box-Cox normal
approximation.

As can be seen from the figures, the Box-Cox normal model approximated the
three chosen distributions quite well. Both the regions of highest density as well
as the tails of the distributions are captured. Only for the Exponential model, the
lognormal and Box-Cox normal models did have problems to describe the density
near 0. From Table 4.1 it can be seen that the means of the lognormal and the
Box-Cox densities were quite close, using (4.14). However, especially the skewness
of the distributions, the third standardized moment of a distribution, differed sub-
stantially. In all cases, the lognormal distribution was more skewed to the right
than the Box-Cox normal distribution. For each distribution, one example is given
in Figures 4.2 - 4.4. The lognormal model distribution was more peaked. According
to the DIC criterion, the best descriptions of the data were obtained with the Box-
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Table 4.1. Parameter estimates, estimated moments (mean, variance and third standard-
ized central moment, the skewness) and DIC for the approximation of Gamma, Exponen-
tial and Weibull data.

Distribution Parameters Moments Model Fit

Simulated Approximated µ̂ σ̂ ν̂ E(X) V ar(X) Skewness DIC

Gamma(3, .05)
LN 3.92 0.64 0 61.0 1757 2.39 97231
BC 7.89 2.04 .31 59.8 1164 1.60 96591

Gamma(7.4, .04)
LN 5.1 0.39 0 176.9 5217 1.29 111411
BC 12.1 1.78 .30 175.6 4266 0.89 111221

Expon(1/64)
LN 3.59 1.27 0 81.2 26403 10.8 105128
BC 6.27 3.06 .27 59.4 3743 2.40 103373

Expon(1/200)
LN 4.22 1.28 0 154.2 97762 11.0 117721
BC 8.34 3.58 .26 126.9 17620 2.43 116022

Weibull(2, 5)
LN 1.32 0.63 0 4.59 10.44 2.46 45744
BC 2.12 1.17 .53 4.43 5.43 0.77 44066

Weibull(5, 6)
LN 1.65 0.31 0 5.48 3.11 0.99 38246
BC 4.66 1.62 1.04 5.45 2.30 -0.03 36779

Cox normal model. Of course, this does not prove that the Box-Cox model is well
suited to approximate all possible Gamma or Weibull models. However, the aim of
this example was to show that, for a typical range of response times, the Box-Cox
model does provide a good approximation to such data.

4.6.2 Empirical Example

For this example, the data of 405 test takers on 214 items from a computerized
version of the MCAT were analyzed. Six items were omitted from the data set
because the algorithm showed convergence problems for them. For the remaining
items, only a few observations were missing (less than one percent). These were
assumed to be missing at random and were ignored in the estimation procedure.
Preliminary analysis showed that the time discrimination parameter did not vary
across items using the DIC criterion. The analysis reported below were therefore
conducted under the restriction φ = 1.

Step 1

Two models were fitted to the data: model M1, with the restriction ν = 0 (=LN
model) and the more general BC model M2 with ν 6= 0. The prior for the person
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parameters was fixed at a mean of µζ = 0 (for identification) and had a (lowin-
formative) variance of σ2

ζ = 10. For the item parameters, (lowinformative) priors
(µλ, σλ) = (0, 10) were chosen. Since the values for ν are usually within the range
of [−1, 1], a slightly informative uniform U(−4, 4) density was specified as prior.
The models were estimated using 100,000 iterations of the MCMC algorithm, from
which every 10th sample was stored. The reason for doing so is to reduce the
auto-correlation between the draws of the transformation and item parameters.
The draws of the transformation parameter affects the mean and variance of the
distribution on the transformed time scale and therefore influences λk and τk. It
appeared sufficient to discard the first 1,000 stored samples and base the estimates
of the model parameters and the model fit criteria on the remaining 9,000 samples.
Rerunning the algorithm with different starting values confirmed convergence of
the chains.

Table 4.2 gives the estimated DIC for each model. It can be seen that M2 should
be favored over the more restricted model M1. At the item level, the graphical model
check suggested an improvement of model fit for the majority of the items for the
BC model. The .95 HPD region of the transformation parameter was estimated as
(.19, .21). Since the DIC was calculated by summing the deviance terms over the
items, it was straightforward to obtain the estimates of the DIC at the item level
as well. From these results, it followed that model M2 was selected by the DIC over
M1 for 174 of the 214 items.

The graphical posterior check suggested that the LN model assigned somewhat
more weight to the middle region and somewhat less to the tails of the distributions.
Plotting the estimated densities of the three models for some items confirmed this
impression; the plots showed that the density of the BC model was less peaked near
its highest density region and has somewhat wider tails than the LN model. On
average, these difference resulted in an improved description of this data set.

Table 4.2. Estimated DIC values for the models of the MCAT analysis

Model DIC

M1 Lognormal 830132
M2 Box-Cox 822847
M3 Box-Cox 820963

(item-specific)

Item-Specific Transformation Parameters

The flexibility of the RT model may be improved further by making the transfor-
mation parameter item specific. We explored this possibility mainly for theoretical
reasons but observe that item-specific transformations also lead to item-specific
time scales. As discussed below, we therefore expect the applicability to be low.
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Using the DIC, the introduction of the item-specific transformation (model M3)
resulted in improved model fit for 150 items. Except for 17 items, the estimates of
the DIC criterion suggested that the improvement in model M3 relative to model
M1 was significant. The .95 HPD regions of the transformation parameters ν were
consistent with these results as well (zero not being contained within these regions).
Overall, the DIC for the complete data set decreased to 820963 for M3. Although
an improvement, the decrease was smaller than for the transition from M1 to M2

(see Table 4.2).
In order to illustrate the effect of the Box-Cox transformation for this real-data

example, three cases are given in the Figures 4.5, 4.6 and 4.7 in the appendix.
These cases where chosen because they reflected a range of parameter values for
νk. It can be seen that, for Item 86, there was no noticeable difference between
the two competing models even though the DIC criterion suggested a slight loss of
model fit for the BC model. On the other hand, the BC model showed substantial
improvement for Item 4. For Item 15, the result was between the two other items
and pointed at a slight improvement in our description of the data.
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Fig. 4.5. Cumulative probability plots of the posterior probabilities of item 86. Left:
lognormal model, DIC = 4751, ν = 0. Right: Box-Cox normal model, DIC = 4761,
EAP (ν) = .05, .95HPD(ν) = [.00, .10].

4.7 Model Interpretation and Selection

It is interesting to determine the effects of the different transformations on the
interpretation of the RT model parameters. They should help us to guide our choice
of model for different types of analyses.

Upon transformation, the RTs are assumed to follow a normal model. In edu-
cational testing, it is natural to assume variability across persons as well as items.
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Fig. 4.6. Cumulative probability plots of the posterior probabilities of item 15. Left:
lognormal model, DIC = 4189, ν = 0. Right: Box-Cox normal model, DIC = 4142,
EAP (ν) = .19, .95HPD(ν) = [.12, .24].
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Fig. 4.7. Cumulative probability plots of the posterior probabilities of item 4. Left:
lognormal model, DIC = 3918, ν = 0. Right: Box-Cox normal model, DIC = 3810,
EAP (ν) = .26, .95HPD(ν) = [.21, .31].

Differences in the times required to solve the items are reflected by the time inten-
sities λk of the items. That is, if Item 1 is more time intensive than Item 2, this
will be reflected as λ1 > λ2. From (4.5), it can be seen that then the expected RTs
on Item 1 will be higher than those on Item 2 as well: E(Tλ1) > E(Tλ2), which
holds for every ζ. For the speed parameters, the relationship with the expected
RTs is negative. That is, if Person 1 has a speed of working ζ1 greater than Per-
son 2 with speed ζ2, then it holds for every item that for their expected RTs that
E(Tζ1) < E(Tζ2). Discrimination parameter φ does not affect these relationships. It
only controls the rate of decrease in expected RT on an item for one step of increase
in speed of a test taker.
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For νk = ν, k = 1, . . . ,K (that is, one common transformation parameter for all
items in the test), the interpretation above holds. All parameters are on the same
transformed time scale, so it does not make any difference whether ν = 0 or ν 6= 0.
Also, the sign of the relationships between (θ, ζ) or (a, φ), modeled at the second
level, remain the same. Note, however, that the interpretations of time intensity
and speed of the parameters do not hold for the original time scale. For instance,
two items on the log-time scale both with λ = 3, but with τ2

1 = 2 and τ2
2 = 4, have

a mean on the time scale of exp(3 + 2/2) and exp(3 + 4/2), respectively.
Things are different for item-specific transformations, i.e., when νk 6= ν, k =

1, . . . ,K. These transformations result in item specific scales. As a result, it is im-
possible to interpret differences between the item parameter estimates directly as
differences between item characteristics. To do so, an extra scaling step would be re-
quired. Observe that for RTs on multiple tests, each with their own transformation,
the same problem occurs and a scaling step would be required as well. Although
the scale of the item varies under transformations, it can be seen that for two per-
sons with ζ1 > ζ2 their expected response times (on any item) are still ordered by
E(Tζ1) < E(Tζ2), regardless of the transformation. So, by definition, the ranking of
the speed parameters is invariant under these transformations. Thus, item-specific
transformations do affect the scale of the population distribution, σ2

ζ , as well as
the covariance between ability and speed. But they do not lead to interpretative
difficulties for the speed parameters or the dependency between ability and speed.

In practice, however, difficulties might arise in the case of missing data. Even
when the missing data are ignorable, the analysis may still result in different scales
for different test takers: as the scale is item specific, a test taker who misses an item
immediately works on a different speed scale.

In conclusion, the following practical guidelines can be given:

• The case of a common transformation parameter for all items in a test main-
tains the interpretation of the RT model parameters. It gives the researcher
the freedom to fit different distributional shapes to the RT data and admits
comparisons between the person and the item parameter estimates for the test.

• When the interest is in parameter estimates for multiple tests, the transforma-
tion parameter should be restricted to be common to all tests. Then all param-
eters are on the same scale, and no additional equating of scale is necessary to
make comparisons.

• More general item-specific transformations are mainly of main interest when
the focus is on inferences with respect to the ranking of the person parameters.
The item parameters are not directly comparable and would require rescaling
to a common scale first. An example where the item specific transformation
might be of interest is the study of possible aberrant behavior of test takers,
for which van der Linden and Guo (in press) presented an approach based on
residual analysis. Then, the focus is on the individual person-item combinations
and model fit is important to avoid misleading conclusions.
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4.8 Discussion

Transformations to normality have obvious and much exploited advantages for the
statistical modeling of non-normal data. For modeling response times in a psycho-
metric application, the log-transform has proven to be useful. However, this study
was motivated by a data set for which the lognormal model was not able to capture
certain aspects of the data. Therefore, the class of Box-Cox transformations was
considered, which allows for more flexibility in the description of the data. The
examples illustrated how the Box-Cox transformation parameter affects the shape
of RT distributions and, as a result, improves the description of the data.

In Section 2, the full modeling framework for responses and RTs on test items
was developed to place the RT model in a broader context. A strong feature of the
Box-Cox model is that its transforming of the data leaves the standard modeling
framework intact.

In educational testing, it makes sense to decompose observed RTs into item
effects (time intensity) and person effects (speed). Therefore, the parameters of the
RT model presented in (4.5) have a clear interpretation in an educational context.
Also, its conjugacy with the MVN level-2 models for the person and item parameters
allows for straightforward modeling of the dependencies between the parameters in
the level-1 models (van der Linden, 2007; Fox et al., 2007).

Transforming the data instead of the model parameters provides the flexibility
of using different distributional shapes for the RTs, while the MCMC algorithm is
easily extended with an additional sampling step. On the other hand, for instance,
the use of a more flexible 3-parameters Weibull distribution instead of the Box-
Cox transformation would require the replacement of the MCMC steps for the
current normal RT model by much more complicated procedures since the conjugacy
between the level-1 and level-2 models is then lost.

4.9 Appendix: Estimation of the Hierarchical Framework

This section briefly outlines the MCMC algorithm for the full hierarchical frame-
work. A simulation study to illustrate the parameter recovery of this algorithm is
given below. The model can be identified by setting the means of the person pa-
rameters (θ, ζ) to zero (µP = 0) and by specifying

∏K
k=1 φk = 1 and

∏K
k=1 ak = 1

which fixes the scale of the latent variables. Fox et al. (2007) provides a Gibbs
sampler that uses identification for the ability scale by restricting σ2

θ = 1 , where
the identifying restrictions are directly incorporated into the prior distributions.

4.9.1 Algorithm

Linear Measurement Models for Augmented Data

The vector of augmented data Zi = (Zi1, . . . , ZiK) minus the vector of difficulty pa-
rameters, bT , and the similar vector of response times log Ti = (log Ti1, . . . , log TiK)
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minus the vector of time intensity parameters, λt, are stacked in a vector Z∗
i . Then,

both measurement models can be presented as a linear regression structure,

Z∗
i =

(
a⊕−φ)(θi, ζi)t + ei (4.19)

= xIξi + ei (4.20)

where ei ∼ N(0,C2K) and C2K = IK ⊕ IKτ 2.
Similarly, let Zk = (Z1k, . . . , Znk)t and the vector of log response times, log Ti =

(log T1k, . . ., log Tnk)t, to item k be stacked in a vector Z∗
k. Define covariate matrices

Hθ and Hζ as
(
θ,−1n

)
and as

(
−ζ,1n

)
, respectively. A regression structure for

the item parameters can be presented as

Z∗
k =

(
Hθ ⊕Hζ)(ak, bk, φk, λk)t + ek (4.21)

= xP Ωk + ek, (4.22)

where ek ∼ N(0,C2N ) and C2N = IN ⊕ INτ2
k .

Hyperpriors

As a hyperprior for (µI ,ΣI), a normal-inverse-Wishart distribution is chosen. That
is,

ΣI ∼ Inv −WishartυI

(
V −1

I

)
(4.23)

µI | ΣI ∼ N
(
µI0,ΣI/κ

)
, (4.24)

where υI and VI are the degrees of freedom and scale matrix of the inverse Wishart
distribution, µI0 is the prior mean and κ the number of prior measurements.

Similarly, as a hyperprior for ΣP , an inverse-Wishart distribution is chosen.
That is,

ΣP ∼ Inv −WishartυP

(
V −1

P

)
(4.25)

where υP and VP are the degrees of freedom and scale matrix of the inverse Wishart
distribution. The mean µP is fixed at 0 with probability 1 because of the identifi-
cation restrictions.

MCMC Algorithm

Estimation of all model parameters for the full hierarchical framework proceeds as
follows:

Step 1. Sample augmented response data according to (4.3), given the values for
the item and ability parameters.



92 4 A Box-Cox Normal Model for Response Times

Step 2. Sample values for the item parameter from p(Ωk|Z∗
k, ξ,µI ,ΣI) for (k =

1, . . . ,K). A product of a normal likelihood and a normal prior again leads to
a normal posterior distribution. So, from (4.22) and (4.8), it follows that

Ωk ∼ MV N(µΩk
,ΣΩk

) (4.26)

where Σ−1
Ωk

= xt
P C−1

2NxP + Σ−1
I and µΩk

= ΣΩk
(xt

P C−1
2NZ∗

k + Σ−1
I µI).

Step 3. Sample values for the ability speed parameters from a multivariate normal
distribution. Analogous to Step 2, the full conditional posterior distribution is
constructed from a multivariate normal likelihood, (4.20) and a multivariate
normal prior distribution as

ξi ∼ MV N(µξi
,Σξi) (4.27)

where Σ−1
ξi

= xt
IC

−1
2KxI + Σ−1

P and µξi
= Σξi(x

t
IC

−1
2KZ∗

i + Σ−1
P µP ).

Step 4. For the residual variance τ2
k , a conjugate inverse Gamma prior with pa-

rameters Inv − Gamma(g1, g2) is assumed. The posterior is then again an
inverse Gamma distribution with parameter g1 + N/2 and scale parameter
g2 + (tk − (−φkζ + λk))t(tk − (−φkζ + λk))/2.

Step 5. Draw a new value for ν from a proposal density ϕ(ν∗|ν) and accept the
draw with the probability specified in (4.11).

Step 6. The hyperprior parameters are related to a multivariate normal model for
the person parameters, µP ,ΣP , or a multivariate model for the item parame-
ters, (µI ,ΣI).
• The full conditional posterior distribution of (µI ,ΣI) has a normal-inverse-

Wishart distribution (e.g., Gelman et al., 2004). It follows that

p
(
µI | ΣI ,µ0,Ω, VI

)
= N

((
κµ0 + KΩ̄

)
/(κ + K),ΣI/(K + κ)

)
, (4.28)

where Ω̄ =
∑

k Ωk/K. Subsequently, the full conditional of ΣI is an inverse-
Wishart with parameters K+υI and scale parameter VI+

∑
k

(
Ωk−Ω̄

)(
Ωk−

Ω̄
)t + κK

κ+K

(
Ω̄ − µ0

)(
Ω̄ − µ0

)t.
• Similarly, the full conditional of ΣP is an inverse-Wishart with parameters

N +υP and scale parameter VP +
∑

n

(
ξn− ξ̄

)(
ξn− ξ̄

)t + κN
κ+N

(
ξ̄−µP0

)(
ξ̄−

µP0

)t.
4.9.2 Simulation Study for Parameter Recovery

To illustrate the parameter recovery for the algorithm for the full hierarchical frame-
work, a simulation study was performed. We simulated responses under the 2PL
model and RTs under the RT-model with ν = 0.3 for 1000 test takers answering 20
items. The ability and speed parameters were randomly drawn from θi ∼ N(0, 1),
ζi|θi ∼ N(0, 1) with ρ = 0.5 (see Equation (4.7)). The item parameters were ran-
domly drawn according to: ak ∼ N(1, .1), bk ∼ N(0, 1), λk ∼ N(10, 2) and the time
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discrimination parameters were generated from φk ∼ N(2, .3) and subsequently
standardized to assure that

∏K
k=1 φk = 1.

The model was identified by setting µP = 0, σ2
θ = 1 and

∏K
k=1 φk = 1. The

prior variance σ2
ζ was chosen to be noninformative and was set to 100, the prior

covariance between ability and speed was chosen to be ρ0 = 0. Priors for the item
parameters were noninformative as well and were chosen to be µI0 = (1, 0, 1, 0) and
a diagonal matrix with 10 on its diagonal for the prior covariance matrix. That is,
we assumed prior independence between the response and RT model parameters.

The algorithm was run for 100,000 iterations of which every tenth was stored to
account for autocorrelation induced by the Box-Cox transformation, since the trans-
formation affects the mean and variance of the RT distribution. From the stored
samples, the first 1,000 were discarded as burn-in. The simulated (true) values and
the re-estimated values (Expected A Posteriori, EAP) plus standard deviations of
the model parameters are given in Table 4.3 below. Graphical inspection of the
re-estimated ability and speed parameters showed that their values were in good
agreement with their true values. The EAP estimate of the transformation param-
eter was E(ν) = 0.309 and its .95 highest posterior density region was estimated
to be (0.293, 0.323), which includes the true value of ν = 0.3. It can be seen that
for this example the parameter recovery of the algorithm was good, even with a
moderate number of items.

Table 4.3. Simulated and re-estimated model parameters.

a b α β
True EAP SD True EAP SD True EAP SD True EAP SD

0.92 1.04 0.08 -1.66 -1.77 0.10 0.79 0.85 0.03 7.99 8.14 0.16
0.96 0.96 0.06 0.12 0.14 0.05 0.77 0.78 0.03 10.27 10.49 0.23
1.00 1.03 0.08 1.44 1.53 0.08 1.20 1.20 0.03 8.30 8.49 0.17
1.06 1.07 0.07 -0.96 -0.94 0.06 1.22 1.18 0.03 7.24 7.33 0.14
0.91 0.87 0.06 0.33 0.33 0.05 1.27 1.26 0.03 6.41 6.50 0.11
1.04 0.96 0.06 -0.49 -0.56 0.05 0.85 0.88 0.03 5.50 5.55 0.09
0.84 0.74 0.08 1.79 1.76 0.09 0.82 0.84 0.03 7.63 7.80 0.15
0.93 0.98 0.07 -0.88 -0.85 0.06 1.20 1.23 0.03 6.75 6.92 0.12
0.98 1.01 0.06 0.04 0.08 0.05 0.73 0.73 0.03 9.04 9.26 0.19
0.95 0.86 0.08 1.59 1.47 0.08 1.06 1.05 0.04 4.00 3.99 0.06
0.90 0.94 0.12 -2.60 -2.69 0.18 0.86 0.80 0.03 7.41 7.53 0.14
0.88 0.96 0.09 -1.69 -1.85 0.10 1.04 1.03 0.03 6.85 6.94 0.12
1.08 1.06 0.07 0.69 0.69 0.05 1.06 1.08 0.03 11.03 11.34 0.26
1.00 1.06 0.07 0.89 0.91 0.06 1.15 1.14 0.03 8.31 8.48 0.17
1.11 1.16 0.07 0.05 0.08 0.05 1.01 1.05 0.03 8.72 8.89 0.18
0.68 0.71 0.08 1.73 1.81 0.09 0.95 0.93 0.03 4.87 4.89 0.07
1.02 1.02 0.07 -0.99 -0.97 0.06 1.25 1.21 0.03 8.21 8.32 0.16
1.10 1.23 0.08 -1.26 -1.37 0.08 1.01 1.02 0.03 9.65 9.82 0.21
1.12 1.09 0.06 -0.03 -0.01 0.05 0.88 0.88 0.03 10.22 10.47 0.23
1.11 1.06 0.08 1.67 1.69 0.09 1.14 1.12 0.03 8.77 8.98 0.18





5

IRT Parameter Estimation with Response Times
as Collateral Information

Summary. Hierarchical modeling of responses and response times on test items facili-
tates the use of response times as collateral information in the estimation of the response
parameters. Two sources of collateral information are identified: (i) the joint information
in the responses and the response times summarized in the estimates of the hyperpa-
rameters and (ii) the information in the posterior predictive distribution of the response
parameters given the response times. The latter is shown to be a natural empirical prior
distribution for the estimation of the response parameters. Unlike traditional hierarchical
IRT modeling, where the gain in estimation accuracy is typically paid for by an increase in
bias, use of this posterior predictive distribution improves both the accuracy and the bias
of IRT parameter estimates. In an empirical study, the improvements are demonstrated
for the estimation of the person and item parameters in the 3-parameter response model.

Item response theory (IRT) models belong to the class of models that explain
the data for each unit of observation by different parameters. One of the main
advantages of a hierarchical approach to this class of models is the possibility of
borrowing information on one parameter from the data collected for the units asso-
ciated with the other parameters. This borrowing is realized through the assump-
tion of a common distribution of the parameters as a second level in the statistical
model for the data. The estimator of the parameter then typically compromises
between this distribution and the likelihood associated with the data. In doing so,
it tends to strike a profitable balance between ignoring the data on the other pa-
rameters (separate estimates) and the more reckless assumption that all parameters
are identical (pooled estimates). The profit typically occurs in the form of a more
favorable tradeoff between a higher efficiency of the inference at the cost of a less
serious increase in bias. The profit is reflected in lower mean-squared error of the
estimates.

One of the first examples in test theory demonstrating this principle is the
classical true-score estimate based on Kelley’s regression function,

E(T | X = x) = ρXX′x + (1− ρXX′)µT , (5.1)
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where X is the observed score of the test taker, T the true score, µT the mean true
score in the population of test takers, and ρXX′ the reliability of the test (Lord &
Novick, 1968, sect. 3.7). An estimate of the test takers true score, τ̂ , is obtained
by substituting estimates of µT and ρXX′ derived from the marginal distribution
of the observed scores into (5.1). The estimate compromises between X = x as
a direct estimate of ζ and the estimate of the population parameter µT . In the
representation in (5.1), the weights are ρXX′ and 1 − ρXX′ . But, using a well-
known variance partition in classical test theory, the estimate can be shown to be
also equivalent to the precision-weighted average of x and µ̂T (Novick & Jackson,
1974, Eq. 9.5.11).

As discussed extensively in Novick and Jackson (1974, sect. 9.5), the Kelley
estimate is an instance of the more formal problem of estimating many means si-
multaneously. Later examples of the applications of the same principle of borrowing
information to this problem are the estimation of multiple regressions in m groups
from normal data in Novick, Jackson, Thayer, and Cole (1972) and the estimation of
proportions in m groups from binomial data in Novick, Lewis, and Jackson (1973).
An instructive empirical application of the estimation of multiple regressions is the
often-cited study of the effects of coaching schools on SAT scores in Rubin (1981).

We have not yet specified the nature of the “distribution of the parameters.”
In a frequentist approach, the units of observation are typically assumed to be
sampled from a population and hence their parameters are taken to be random. The
interpretation of Kelley’s estimate in classical test theory belongs to this approach.
From a Bayesian perspective, the assumption of random sampling from a population
is not necessary. When the units of analysis can be assumed to be exchangeable,
any density that approximates the distribution of the parameters for the data set
becomes a profitable common prior for the inference of their posterior distributions.
The difference between a hierarchical model with a population distribution and this
empirical Bayes approach resides only in their motivation and interpretation; the
more formal aspects of both approaches involve the same two-level structure. For
an introduction to the empirical Bayes approach, see, (e.g. Carlin & Louis, 2000,
chap. 3).

In order to emphasize that, in this tradition of hierarchical or empirical Bayes
modeling, the information that is borrowed is collected simultaneously with the di-
rect information on the parameters, Novick and Jackson (1974, sect. 9.5) introduced
the notion of collateral information. This term avoids the more temporal conno-
tation in the Bayesian terminology of prior information, which seems to suggest
that the information should always be present before any data on the parameters is
collected. Mislevy and Sheehan (1989) used collateral information about examinees
for the calibration of item parameters.

It should be noticed that the use of the term “information” differs from that
elsewhere in scientific endeavors, where it is typically taken to imply that observa-
tions can be predicted from other variables. However, collateral information in the
hierarchical sense does not require the presence of any predicting variables but is
already available if the units of observation can be assumed to follow a common
distribution. If the assumption holds, as soon as we collect data for the parameters
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of some of the units, we get information on all of them; for example, about their
typical range of values.

In this paper, we combine first-level models for the responses and the response
times (RTs) by the test takers on the items with second-level models for the joint
empirical distributions of their item and person parameters. As a result, we are
not only able to borrow information on the response parameter for one item from
the responses collected for the other items but also from the RTs collected for
the same item. The same borrowing is possible for the response parameter for
each person. Because responses and RTs are always recorded simultaneously, the
additional information in the RTs is literally collateral. Surprisingly, as will be
shown later in this paper, the fact that the collateral information is specific for the
individual items and persons leads to improvement of both the accuracy and the
bias of the estimates. In doing so, the information thus breaks the bias-accuracy
tradeoff typical of more traditional hierarchical modeling.

The research in this paper was motivated by the fact that now that computer-
based testing has become more dominant, and RTs in this mode of testing are
automatically recorded, it would be imprudent to ignore such information. Before
showing how joint hierarchical modeling of responses and RTs helps to exploit such
information, we first take a closer look at the role of collateral information in the
more traditional problem of parameter estimation in a separate IRT model.

5.1 Collateral Information in IRT

The example considered is the estimation of ability parameter θi for a test taker i
in a response model (e.g., the well-known three-parameter logistic model) of which
the item parameters are already known. The case is met, for instance, when a test
from a calibrated item pool is used to measure the abilities of several test takers.

Suppose the test takers are from a population with a normal distribution of
ability N(µθ, σ

2
θ), of which the mean µθ and variance σ2

θ have already been estimated
with enough precision to treat them as known. Estimates of θi that capitalize on
this information should be based on the posterior distribution

f(θi | yi, µ̂θ, σ̂
2
θ) ∝ f(θi;yi)f(θi | µ̂θ, σ̂

2
θ), (5.2)

where yi = (yi1,...,yiK) are the responses by i on the K items in the test, f(θi;yi)
is the likelihood associated with the response vector of i, and µ̂θ and σ̂2

θ are the
available estimates of the population parameters.

The mean of this distribution, which is often used as a point estimate of θi, is
generally known to have a smaller mean square error than an estimate based on the
likelihood f(θi;yi) only. The decrease is due to the information in the population
density f(θi | µ̂θ, σ̂

2
θ) in the right-hand side of (5.2), which tells us, for instance,

where the ability parameters in the population are concentrated and how much
they are dispersed. The decrease is paid for by an increase in the bias of the ability
estimate toward the mean of the population of test takers or the domain of items.
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This combination of effects is an example of the well-known bias-accuracy tradeoff
in statistics. However, in hierarchical modeling, the tradeoff is exploited to work to
our advantage; the improved accuracy is generally realized at a less serious increase
in bias.

The same principle can be shown to hold for the estimation of the item pa-
rameters. The only change necessary is the replacement of the population density
f(θi | µ̂θ, σ̂

2
θ) in (5.2) by that for the (joint) distribution of the item parameters.

In (5.2), we assumed that the population parameters µθ and σ2
θ had already

been estimated. This was only because we wanted to emphasize that the estimate
of θi was actually based on empirical information about the population distribution.
Also, we assumed that the item parameters were already known. Both assumptions
are not necessary, though. The same borrowing of information occurs when we
fit a hierarchical model with unknown parameters for the items and persons and
hyperparameters for their distributions and estimate all unknowns simultaneously.
The second-level distribution that is fitted then constrains the estimates of the
parameters in the response model in precisely the same way as when it had been
fitted previously. (Actually, due to the fact that some of the parameters in the
response model are not identifiable, the notion of collateral information becomes
more subtle. For example, for the 3PL model, a common choice is to use µθ = 0
and σ2

θ = 1 as identifiability constraints. The choice leads to the replacement of
the population density in (5.2) by f(θi | 0, 1). The density does not involve any
parameter estimation but remains a source of empirical information; knowledge of
its shape allows us to derive information on one parameter from information on the
others.)

5.2 Hierarchical Model

In order to profit fully from the information on the IRT parameters in the RTs, we
have to adopt a model for the RTs and to model the common distribution of all
person and item parameters. The result is a hierarchical framework with the IRT
and RT models as first-level components and population and domain models for the
IRT and RT parameters as second-level components. The RT model in (5.4) below
was proposed in van der Linden (2006) whereas the extension with the second-
level models in (5.5)–(5.9) was introduced in van der Linden (2007). These models
are borrowed to demonstrate the benefits of using RTs as collateral information
when estimating IRT parameters; other models substituted in the same type of
hierarchical framework would do the same job.

5.2.1 IRT and RT Models

As the first-level model for the responses of test takers i = 1, ..., N on items k =
1, ...,K, we use the three-parameter normal-ogive (3PNO) model, which gives the
probability of a correct response on item k by person i as



5.2 Hierarchical Model 99

P (Yik = 1; θi, ak, bk, ck) = ck + (1− ck)Φ(akθi − bk), (5.3)

where Φ(·) denotes the normal distribution function and ak, bk, and ck are the
discrimination, difficulty, and guessing parameters for item k, respectively.

Response-time distributions are often approximated well by lognormal distribu-
tions (for a review of alternatives, see Schnipke & Scrams, 2002. Therefore, analo-
gous to the IRT model in (5.3), the RTs are modeled with a speed parameter ζi for
test taker i and time intensity and discrimination parameters λk and φk for item k,
respectively. Let Tik denote the RT of test taker i on item k. The lognormal model
posits that

Tik = −φkζi + λk + εik, εik ∼ N(0, τ2
k ). (5.4)

Notice that, except for the difference in sign, which is due to the negative rela-
tionship between time and speed, the two parameters for speed and time intensity
in (5.4) play an identical role as those for the ability and item difficulty in (5.3).
However, unlike (5.3), RT distributions have a natural zero and do not involve the
estimation of any lower asymptote.

5.2.2 Population and Domain Models

The population model specifies the joint distribution of the person parameters θ
and ζ. We assume that the distribution is bivariate normal,

(θ, ζ) ∼ MV N(µP ,ΣP), (5.5)

where
µP = (µθ, µζ) (5.6)

and covariance matrix

ΣP =
(

σ2
θ ρ

ρ σ2
ζ

)
. (5.7)

Likewise, item parameters ak, bk, φk, and λk in the response and RT models
are assumed to have a multivariate normal distribution,

(a, b, φ, λ) ∼ MV N(µI ,ΣI), (5.8)

where
µI = (µa, µb, µφ, µλ) (5.9)

and matrix ΣI has all variances and covariances between the item parameters as
elements.

This hierarchical model is not yet fully identifiable. In addition to the usual
lack of identification for a hierarchical IRT model, the parameters λk and ζi in the
RT model are not identified; addition to a constant to λk can be compensated by
addition of the same constant to ζi. Identifiability is obtained if we set µP = 0,∏K

k=1 φk = 1 and σ2
θ = 1.
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5.2.3 Bayesian Estimation

In the empirical examples later in this paper, the model parameters were esti-
mated using Bayesian estimation with data augmentation and a Gibbs sampler.
The method uses normal inverse-Wishart priors for the mean vectors and covariance
matrices for the multivariate models in (5.5) and (5.8), which have the convenient
property of conjugacy (Gelman et al., 2004, sect. 3.6). For the data augmentation,
see Albert (1992) or Johnson and Albert (1999). For a discussion of Gibbs sampling,
see Gelman et al. (2004, chap. 11) or Gelfand and Smith (1990). For technical de-
tails of the estimation method, see Klein Entink, Fox, and van der Linden (in press)
and van der Linden (2007). A package of procedures in the statistical language R
that implement the method is described in Fox et al. (2007).

5.3 Different Sources of Information

We demonstrate the same principle as in (5.2) but this time for a test taker j with
response vector yi = (yi1,...,yiK) and RT vector ti = (ti1,...,tiK). Again, without
loss of generality, we assume that the second-level means, µP and µI , and covari-
ance matrices ΣP and ΣI , have already been estimated during item calibration.
Consequently, θi and ζi are the only unknown parameters.

The complication we are now faced with is an estimation problem with two
separate likelihoods–a primary likelihood that is response based and one associated
with the RTs under the lognormal model in (5.4). In order to assess the improvement
in the estimation of θi relative to (5.2), we try to derive the posterior distribution of
θi as a product of the primary likelihood and whatever other factors necessary. The
comparison of these other factors with the prior distribution of θi in (5.2) should
allow us to assess the improvement in the estimation of θi relative to (5.2).

The posterior distribution of θi follows from the joint distribution of θi and ζi

given all known quantities

f(θi | yi, ti, µ̂P , Σ̂P) =
∫

f(θi, ζi | yi, ti, µ̂P , Σ̂P)dζi. (5.10)

For the integral, it holds that∫
f(θi, ζi | yi, ti, µ̂P , Σ̂P)dζi ∝

∫
f(yi, ti; θi, ζi)f(θi, ζi | µ̂P , Σ̂P)dζi. (5.11)

Hence, because of local independence,

f(θi | yi, ti, µ̂P , Σ̂P) ∝
∫

f(yi; θi)f(ti; ζi)f(θi, ζi | µ̂P , Σ̂P)dζi. (5.12)

Factorizing f(θi, ζi | µ̂P , Σ̂P), we obtain
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f(θi | yi, ti, µ̂P , Σ̂P) ∝ f(yi; θi)
∫

f(θi | ζi, µ̂P , Σ̂P)f(ti; ζi)f(ζi | µ̂P , Σ̂P)dζi

∝ f(yi; θi)
∫

f(θi | ζi, µ̂P , Σ̂P)f(ζi | ti)dζi, (5.13)

where the second step follows from the definition of the posterior distribution of ζi

as
f(ζi | ti) ∝ f(ti | ζi)f(ζi | µ̂P , Σ̂P). (5.14)

For the integral in the second line of (5.13), it holds that∫
f(θi | ζi, µ̂P , Σ̂P)f(ζi | ti)dζi ∝ f(θi | ti, µ̂P , Σ̂P). (5.15)

Notice that the right-hand side is the posterior predictive density of θi given ti; that
is, the probability of the test taker’s ability θi given his/her speed ζi integrated over
the posterior distribution of ζi given the response times ti.

Thus, we are able conclude that

f(θi | yi, ti, µ̂P , Σ̂P) ∝ f(yi; θi)f(θi | ti, µ̂P , Σ̂P). (5.16)

The result has a simple form that is entirely analogous to (5.2). It shows that, when
the RTs are used as collateral information, θi is estimated from the same likelihood
f(yi; θi) associated with the response vector yi as when the RTs are ignored but
with the original prior distribution of θ in (5.2) replaced by the posterior predictive
distribution of θi given the RTs ti for the test taker.

More generally, the result also answers our earlier question of how to deal with
the presence of two different likelihoods in the statistical inference for one kind of
parameters in an hierarchical framework as in (5.3)–(5.9). The solution is to keep
the likelihood of the primary parameters in tact but absorb the second likelihood
in the posterior predictive density of the primary parameters given the information
collected for the other parameters. (Our use of the term “posterior predictive den-
sity” is motivated by its formal definition as a model density—here: that of θ given
ζ— integrated over the posterior distribution of its parameters; see, (e.g. Gelman
et al., 2004, sect. 1.3). It is only used for prediction in a thought experiment in
which we pretend not to know anything about θ but estimate it from the RTs. Its
standard use in Bayesian statistics is for a prediction of a new observation under
the same density as for the observations that led to the posterior distribution.)

The result in (5.16) enables us to identify three different sources of information
on θi:

1. The information directly available in yi in the first factor of (5.16); that is, the
regular likelihood f(yi; θi) associated with the response vector.

2. The information summarized in the estimates µ̂P and Σ̂P in the second factor.
This information is derived from the vectors of responses and RTs in the entire
sample of test takers. These estimates generalize the role of µ̂θ and σ̂2

θ in (5.2).
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3. The information in the shape of the posterior predictive distribution of the
response parameters given the response times. Unlike the preceding source of
information, the information in this vector is unique for each individual test
taker.

Notice how the use of the RTs for test taker i as collateral information on θi

turns the common posterior distribution for all test takers in (5.2) into an individual
distribution for i. This information highlights an important role played by the RTs.
They lead not only to a further decrease of the variance of the posterior distribution
of θi relative to (5.2) but also to move its location closer to the true ability level of
the test taker.

Analogous effects of the RTs can be shown to hold for the estimation of the item
parameters. To demonstrate this point, the same argument can be followed with
µ̂P , Σ̂P , θi, and ti replaced by µ̂I , Σ̂I , item-parameter vector ξk = (ak, bk, ck) and
RT vector tk, respectively. The result is

f(ξk | yk, tk, µ̂I , Σ̂I) ∝ f(yk; ξk)f(ξk | tk, µ̂I , Σ̂I). (5.17)

Again, it is not necessary to estimate the second-level parameters prior to esti-
mating θi and ξk. The collateral information in the RTs is retained if the full hier-
archical model is fitted to all response data and RTs simultaneously. The estimates
of θi and ξk are then still constrained by the conditional posterior distributions
f(θi | ti, µP ,ΣP) in (5.16) and f(ξk | yk, tk, µI ,ΣI) in (5.17) while the procedure
looks for estimates of (µP ,ΣP) and (µI ,ΣI) that fit the entire data set best.

5.3.1 Bias-Accuracy Tradeoff

It is important to notice the consequences of the replacement of the common prior
distribution of θ for all test takers in (5.2) by the individual distribution for θi

in (5.16). The new prior distribution does not only have a smaller variance but,
because of its conditioning on the RTs for each individual test taker, also tends to
have a location closer to his/her true ability level. The impact of the former is a
further increase of the posterior precision of θi; the impact of the latter a decrease
in the bias of the posterior mean. The size of both effects is dependent on the
(absolute) size of the correlation between the response and RT parameters.

As already argued, parameter estimation in traditional IRT hierarchical model-
ing is subject to the well-known bias-accuracy tradeoff in statistics. For this type of
modeling, the addition of a population model for the distribution of the θ parame-
ters leads both to an increase in the bias and accuracy of their estimates. However,
as long as a sensible distribution is chosen, the net result—summarized in the mean
square errors of the parameters—is positive.

On the other hand, the posterior predictive density of θi in (5.16) is conditional
on the actual RTs by each test taker i, and therefore serves as a prior with an
individual location for each of them. Unlike the use of a population distribution as
a common prior, whose location necessarily compromises between the true values
of the individual θs, and hence produces a bias in their estimates, these individual



5.4 Empirical Example 103

priors avoid the necessity of such a compromise. In addition, they have smaller
variances and are thus more informative.

5.4 Empirical Example

Simulation studies were conducted to demonstrate the effect of the use of the collat-
eral information in the RTs on the estimation of IRT model parameters. Obviously,
the improvements are dependent on the correlation between the parameters in the
second level of the hierarchical framework in (5.3)–(5.9). In this study, we focused
on the correlation between the speed and ability parameters, ρ. (The effects for the
other parameters are analogous.) The evaluations were therefore conducted for a
range of alternative sizes of ρ. In order to assess the improvements of the estimation
of the item and person parameters in the response model separately, two different
studies with a different setup had to be conduced.

5.4.1 Study 1: Ability Estimation

Responses and RTs were simulated for N = 1, 000 test takers on a 30-item test for
five levels of correlation: ρ = 0, .25, .50, .75, 1. Only positive correlations were used;
the results generalize immediately to negative correlations.

The parameters ak were randomly drawn from U(0.8, 1.2). In order to guarantee
a test with uniform distribution of the item difficulties across θ, we did not sample
the difficulty parameters bi but used equally spaced values on (− 31

15 , 31
15 ) with steps of

2
15 . The guessing parameter was assumed to be .25 for all items, which represents the
case of four-choice items. (This parameter was further ignored in the evaluations.)
The time intensity parameters for the RT model were randomly drawn from λ ∼
N(5, 1) and the discrimination parameters φ were fixed to 1.

The ability parameters for the test takers were taken to be the N = 1, 000
quantiles of the N(0, 1) distribution. This decision guaranteed coverage of the whole
θ range and allowed us to assess the statistical quality of the estimators of θ with
uniform precision over the range. The speed parameters for the test takers were
drawn from the conditional distributions of ζ|θ for the assumed correlation ρ, where
the marginal distribution of ζ was always N(0, 1). In order to estimate the bias and
mean square error of the θ estimates, the entire setup was replicated 10 times for
each of the five sizes of the correlation between θ and ζ.

The ability parameters of the test takers were estimated for two different cases:
First, all item parameters were assumed to be known and the ability parameters
were the only parameters estimated (case of measurement using previously cali-
brated items). Second, both the item and person parameters were treated as un-
known and estimated simultaneously (case of ability estimation in a calibration
study). Because the results for the two cases showed only minor numerical differ-
ences, our report focuses on the first case.

The parameters were estimated using the Gibbs sampler referred to earlier. Non-
informative fixed priors were chosen for the item parameters, µI was set equal to
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(1, 0, 1, 0), and ΣI was taken to be a diagonal matrix with variance 10. (Note that
we did not estimate the second-level distribution of the item parameters.). For the
person parameters, independent, non-informative hyperpriors were specified with
µP0 = 0 for the mean vector and ΣP0 a diagonal matrix with variance 10 for the
covariance matrix. The Gibbs sampler was run for 10,000 iterations. A burn-in
of 500 iterations was sufficient to reach convergence; autocorrelation between the
draws appeared to be negligible after more than 10 iterations.

The results were evaluated using the mean square error (MSE) and bias for the
EAP estimates of θ (= mean of their posterior distributions) as criteria. The MSEs
for the cases without and with the RTs are defined as

MSE(θi | yi) = E[(θi − θ̂i)2|yi] =
∫

(θi − θ̂i)2f(θi|yi)dθi (5.18)

and

MSE(θi | yi, ti) = E[(θi − θ̂i)2|yi, ti] =
∫

(θi − θ̂i)2f(θi|yi, ti)dθi, (5.19)

where, for convenience, the posterior distributions of θi in these two expression
are denoted without the hyperparameters. Likewise, the bias for the two cases are
defined as

Bias(θi | yi) = E[θ̂i − θi|yi] =
∫

(θ̂i − θi)f(θi|yi)dθi (5.20)

and

Bias(θi | yi, ti) = E[θ̂i − θi|yi, ti] =
∫

(θ̂i − θi)f(θi|yi, ti)dθi (5.21)

For a Gibbs sampler, these expressions can easily be estimated as

1
M

M∑
m=1

(θi − θ
(m)
i )2, (5.22)

respectively,

1
M

M∑
m=1

(θi − θ
(m)
i ), (5.23)

with m = 1, ...,M denoting the iterations of the sampler after burn-in.
Figure 5.1 shows the decrease in MSE, i.e., MSE(θi | yi) −MSE(θi | yi, ti),

due to the use of the RTs as collateral information as a function of θ for the
five conditions for ρ. (Notice that the original scale of θ is not used but that for
the monotone transformation of θ by its cumulative distribution function. The
transformation enables us to average the MSEs over intervals with 10% of the test
takers and create uniform precision for the plotted MSEs across the scale.) Clearly,
ρ = 0 corresponds with the baseline case of fitting the IRT model without using
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Fig. 5.1. Reduction in the MSE of the estimates of θ for different correlations ρ. (Note:
for the scale of θ, see the text.)

any of the RTs. As the correlation increases, the same happens with the gain in
the MSE. This trend shows that the more collateral information on the ability
parameters in the RTs, the more accurate their estimates become.

Figure 5.2 shows similar plots for the decrease in bias in the estimation of θ,
i.e., Bias(θi | yi)−Bias(θi | yi, ti). For abilities below the population mean µθ = 0
there is a positive difference in the bias between estimation with and without RTs;
above the population mean there is a negative difference. The difference is larger
for larger correlations ρ. This finding indicates that when the speed parameter is
informative for ability, the individual prior distributions of θi are pulled away from
the population mean by the RTs, resulting in less estimation bias.

In conclusion, from this first study it can be seen that for test takers located
near the population mean, the effects are relatively small. But for abilities toward
the upper and lower end of the scale (which are hardest to measure), the accuracy
of estimation improves considerably. Note that in this setup the information in
the RTs improves the estimated abilities even for a moderate correlation of .5
between ability and speed. Moreover, it is obvious that these results also generalize
to negative correlations between the two parameters.
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Fig. 5.2. Reduction in the bias of the estimates of θ for different correlations ρ. (Note:
for the scale of θ, see the text.)

5.4.2 Study 2: Item Calibration

The second study was to evaluate the use of the collateral information in the RTs
in item calibration. Its setup had to be more complicated because we wanted to
isolate the effects of the RTs on the item parameters ak and bk. The trick we used
was to first obtain the posterior distributions of θ for the persons in the sample for
known item and speed parameters and then estimate the items parameters using
a version of the Gibbs sampler in which the values for the θs were drawn directly
from their known posterior distributions. First, we held the parameters bk constant
and varied the parameters ak. Second, the role of these two kinds of parameters
was reversed. Finally, to avoid the effects of possible tradeoffs between the ak and
ck parameters - known to exist due to occasional weak identifiability of the 3PL
model -, the simulation was conducted with ck fixed at .25 for all items.

More specifically, the setup was the following. First, a 10-item test with known
item parameters was used to obtain the posterior densities of the ability parame-
ters of N = 300 test takers. Item parameters bk were taken to be equally spaced
on [−1.8, 1.8] with steps of size 0.4; parameters ak were randomly drawn from
U(.8, 1.2). The 300 test takers were selected to have ability parameters correspond-
ing to the 300 quantiles of the N(0, 1) distribution. The speed parameters were
randomly drawn from the conditional distributions of ζ|θ for the appropriate cor-
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relation ρ. For these parameters, response patterns y1 were simulated for the test
takers. The Gibbs sampler was then run with known item parameters and speed
parameters to obtain 10,000 draws (after burn in) from the posterior distributions
of θs. The procedure was repeated for four sizes of correlation between the ability
and speed parameters: ρ = 0, .5, .7, and .9.

Second, the posterior densities of the ability parameters obtained in the first step
were used to calibrate five new items. From Study 1, we knew that the higher the
correlation ρ, the more accurate the ability estimates. As a result, we also expected
more accurate estimates of the item parameters. To confirm this expectation, for
the same population of test takers, response patterns y2 were generated for two
different versions of a 5-item test: (i) ak = .5, .7, .9, 1.1, and 1.3 but bk = 0 for
all items and (ii) bk=−2, −1, 0, 1, and 2 but ak = 1 for all items. By first varying
the aks while holding the bks constant and vice versa, we were able to evaluate
the effects of the correlation ρ on the two kinds of item parameters in isolation.
For both cases, the item parameters were calibrated using the version of the Gibbs
sampler with the earlier obtained draws from the posterior distributions of the
ability parameters.

Again, the MSE was used as a criterion to evaluate the parameters estimates.
For example, for the parameters ak we compared

MSE(ak|y2,y1) = Ea|y2 [Eθ|y1 [(ak − âk)2|y2,y1]] (5.24)

with
MSE(ak|y2,y1, ζ) = Ea|y2 [Eθ|y1,ζ [(ak − âk)2|y2,y1, ζ]], (5.25)

where the inner expectation involves integration over θ given the calibration data,
respectively the calibration data and the RTs. The MSEs for the parameters bk

were defined analogously. Again, these statistics can be estimated from the MCMC
chain in a similar fashion to (5.22).

The results are presented in Figures 5.3 and 5.4. Both plots show the decrease in
MSE relative to the condition without the use of RTs, e.g., for the parameters ak,
MSE(ak|y2,y1)−MSE(ak|y2,y1, ζ). It is well known that estimation error tends
to be higher for the larger parameters ak. Therefore, the improvement in accuracy
of the estimation of these parameters is mainly found for the higher discriminating
items. For the parameters bk, the improvement in estimation is mainly found at the
lower and upper ends of the ability scale, similar to that for the ability parameters
in Study 1.

An interesting result was obtained for the information functions of the items.
In Figure 5.4, the result of an integration of the information functions over θ is
plotted as a function of the difficulty parameter of the items. The plot shows that
the impact of the RTs is most effective in the areas where the difficulty parameters
are hardest to estimate. Finally, we emphasize again that the improvements in
the estimation of the item parameters comes only from the improved accuracy of
ability parameters estimates in the presence of the collateral information in the RTs.
Additional beneficial effects through the correlation between the item parameters
in the response and RT models were not included in these studies.
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Fig. 5.3. Reduction in the MSE of the estimates of ak for different correlations ρ.

5.5 Discussion

Since its inception, test theory has been hierarchical; the randomness of an observed
score of an individual test taker has always been distinguished from that of his or
her true score due to sampling from a population. In addition, for its statistical
inference, test theory has been an early adopter of the Bayesian methodology. It
therefore seems natural to broaden the traditional hierarchical (vertical) type of
modeling of responses in IRT with the horizontal extension of RT modeling in this
paper.

Further improvement of parameter estimation has always been a concern of the
testing industry; it makes test scores more informative and reduces the costs of item
calibration. But there has also been a general reluctance to use other information
than the test takers’ performances on the test items, especially, when the informa-
tion is population dependent . We respect this reluctance but add the following
elements to the discussion. First, RTs are part of the test takers’ performances on
the test items. Using them is not the same as, for example, the practice of regressing
the test takers’ abilities on background variables or any other type of information
with only an indirect relation to the test performance. Therefore, we expect less
objection against the use of RTs, particularly when estimating item parameters.
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Fig. 5.4. Reduction in the MSE of the estimates of bk for different correlations ρ.

Second, the use of RTs does not change the construct or dimension measured
by the test in any way. The same parameter θ is estimated with and without the
use of RTs as collateral information. In both cases, θ is the only person parameter
that explains the probability distributions of the responses on the items. Besides, it
does not have any impact on the RT distributions. This lack of impact is reflected
in the assumption of local independence between the responses and RTs in the
hierarchical frameworks used in this paper. Thus, the difference between estimating
ability parameters with and without the collateral information in the RTs is not in
the parameter that is estimated, only in the increase in accuracy with which this is
done.

Third, the modeling framework does require the specification of a second-level
population distribution and may therefore seem to suggest some form of population-
dependent test scoring. However, the role of the second-level distribution is different
from that in traditional hierarchical estimation. For example, in Kelley’s regression
function and in (5.2), the estimates are drawn to the mean true score in the popu-
lation of test takers, and different estimates are obtained for different populations.
On the other hand, the θ estimate from (5.16) is dependent only on the condi-
tional distribution of θ given the test taker’s speed ζ. It is a general statistical
finding that such conditional distributions tend to be invariant with respect to
their marginal distribution, i.e., the population distribution of θ. (For example, the
same invariance drives the equating of observed test scores with poststratification in
a nonequivalent-groups equating design; (e.g. Kolen & Brennan, 2004, sect. 5.1)).
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For the current application, we expect the conditional distributions of θ given ζ
to be dependent on such factors as the type of skill/knowledge measured by the
test, the test instructions, and the time limit, but not on any differences between
populations of test takers once these factors have been standardized.

Fourth, we expect the use of RTs as collateral information not to be an issue
for ability estimation in low-stakes testing (e.g., diagnosis for remedial instruction
in education). If it would be an issue in the more controversial area of high-stakes
testing, we could still use the RTs jointly with the responses to optimize the test
but produce a final score based on the responses only. An example is adaptive
testing, where the items during the test can be selected using the θ estimates in
this paper but the final estimate could be inferred from the responses only. For this
application, roughly the same reduction of test length has been found as for the
MSEs of the θ estimates in the empirical example above (van der Linden, 2008).

Finally, the main conclusion from this paper can be summarized by stating that
in order to get better estimates of the test takers’ abilities, the speed at which they
have responded should be estimated as well. We did not discuss the reverse problem
of estimating the test takers’ speed in this paper. Since the modeling framework
is symmetrical with respect to the two estimation problems, the reverse conclusion
holds, too: in order to efficiently estimate how fast test takers respond to the items
in the test, their abilities should be estimated.

At first sight, both conclusions seem counterintuitive. But they follow directly
from the Bayesian principle of collateral information for the joint hierarchical mod-
eling used in this research.



6

Multivariate Generalized Linear Mixed Models for
Responses and Response Times

Summary. Computerized testing makes it straightforward to collect both responses and
response times on test items. To make optimal use of both data sources, multivariate
methods are required that also take account of the nesting of observations within test
takers. The class of multivariate generalized linear mixed models is well suited for these
kind of problems. It allows the user to specify different link functions for several data
types and to model dependencies between multivariate observations via the random effects
structure. Moreover, this modeling framework can be treated using standard available
software. Two empirical examples illustrate the advantages of making joint inferences
from responses and response times.

6.1 Introduction

Computerized testing easily allows for the collection of both responses and response
times (RTs) on test items. The RTs are additional data on the test items that come
for free and it is of interest to take them into account, since they might reveal
information on test takers and/or the items in the test. For example, RTs can help
to reveal rapid-guessing behavior of test takers (Schnipke & Scrams, 1997), which
is more difficult to infer from the responses alone.

To be able to make joint inferences from the responses and RTs, we require
a statistical framework that can deal with the observed data. First, that requires
models that can handle mixed binary and continuous responses. Second, the models
should incorporate the nesting of responses and RTs within persons. That is, we
have to model dependencies within the two data sources to account for correlations
between measurements within subjects. Third, the models should allow for model-
ing possible dependencies between the two data sources, since we are interested in
making inferences about the relationships between the responses and RTs.

The first requirement can be accommodated by the class of generalized linear
models (GLMs) (Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989). The
class of GLMs links non-normal data to a linear predictor via a link function. This
allows, for instance, to relate binary data via a probit or logit link to a linear model.
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A strong feature of GLMs is that by specifying different link functions it is possible
to deal with various types of data. Also, these models are well developed and can be
evaluated easily within a likelihood framework. Most statistical software packages
have routines that are able to deal with these models.

The nesting of observations within subjects is commonly modeled at a second
level of modeling. By assuming that the same parametric structure holds for all sub-
jects, but that (some) parameters are allowed to vary randomly over the subjects,
the heterogeneity between subjects can be taken into account (Snijders & Bosker,
1999). These types of models are know as mixed models, since they allow covari-
ates to enter the model as fixed (general) effects and/or as subject-specific random
effects. Also the class of GLMs allows easily for a generalization to mixed models,
known as generalized linear mixed models (GLMMs). As with GLMs, GLMMs re-
late non-normal data via a link function to a linear predictor, but now the linear
predictor consists of both a fixed and a random part. Thereby, GLMMs fulfil our
first two requirements and allow us to model univariate discrete and continuous
responses, taking the nesting of the data within subjects into account. Still, these
models can be treated in a likelihood framework but are more difficult to deal
with. Estimation requires integrating out the random effects and relies either on
numerical approximation of the integral, like Gaussian quadrature, or analytical
approximations of the integrand, like Taylor series expansions (Tuerlinckx, Rijmen,
Verbeke, & De Boeck, 2006).

Models for multivariate responses have not had much attention in the psycho-
metric literature, an exception being Liu and Hedeker (2006) who developed a
model for multiple ordinal outcomes. (With multivariate responses is meant here
that we observe responses and response times, of course, an IRT model is already
multivariate in itself.) However, multiple responses nested within subjects often
arise in medical studies. For example, bivariate mixed effects models have been em-
ployed for the joint modeling of CD4 and CD8 lymphocytes, to follow the evaluation
of these markers in HIV infection studies (Shah et al., 1997; Thiébaut, Jacqmin-
Gadda, Chêne, Leport, & Commenges, 2002). Models for mixed continuous and
discrete/polytomous data in biological applications were discussed in, for example,
S.-Y. Lee and Shi (2001), Gueorguieva (2001) and Fieuws, Verbeke, and Molen-
berghs (2007). Within the mixed model framework, dependencies between multiple
outcome variables can be modeled via the random effects structure. Possibilities
to do so include that of correlated error terms, shared random effects or corre-
lated random effects. The shared random effects approach has been popular in the
biostatistics field. There, interest is commonly focussed on the outcome variables
itself and the shared random effect merely serves as a tool to analyze dependencies
between them. Moreover, a shared random effect only allows for the modeling of a
positive dependency between variables and is therefore less flexible. A recent paper
by McCulloch (2008) discusses these different techniques of modeling dependen-
cies between multiple outcomes via the random effects structure. This extends the
GLMMs to the class of multivariate generalized linear mixed models (MGLMMs).

Thereby, the MGLMMs fulfil all three requirements, which links our problem of
modeling mixed response data to a broad class of statistical models. The advantages
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that Rijmen, Tuerlinckx, De Boeck, and Kuppens (2003) mentioned in their paper
for modeling item response theory (IRT) models in a GLMM framework also gen-
eralize to the class of MGLMMs. They advocated that an advantage of the mixed
model approach to IRT modeling is that it relates the latter to a broad statistical
literature. Also, using a standard framework of modeling easily accommodates for
adaptions or extensions of the model.

In educational testing, the random effect is usually assumed to be the under-
lying ability construct for the responses. Similarly, the heterogeneity between test
takers on the RTs will be assumed to result from differences in speed, which gives
us a sensible interpretation of the random effect for the response times. Separate
random effects for each outcome variable allow us to model the dependencies be-
tween the two outcomes by assuming a common distribution for the random effects,
an approach followed earlier by van der Linden (2007).

In this chapter, we will exploit the class of MGLMMs to jointly model responses
and response times on test items. It provides us with a flexible framework for
analysis that can be treated in a likelihood framework using standard software. Two
examples are provided for illustration of the use and usefulness of the methods.

6.2 A Generalized Mixed Model for Multivariate Item
Response Patterns

6.2.1 A Multivariate Mixed Effects Model

A generalized mixed model assumes that, conditional on a vector of random effects
θ, the observations Yik are independent with means µik = E(Yik|θ). Subsequently,
the conditional mean µik is related to a linear predictor ηik via a link function g(·).
For the kth observation Yik on subject i this gives

E(Yik|θi) = µik = g−1
1 (ηik) = g−1

1 (x′ikβ + z′ikθi), (6.1)

where xik is a vector of covariates of length p, β is a vector of fixed effect regression
parameters, z is a design matrix (the equivalent of x) for the random subject
components θi. Further, g(·) denotes a link function and g(·)−1 its inverse. When
yik is a realization of an indicator variable denoting a correct (1) or incorrect (0)
response of subject i on item k, a Bernoulli sampling model is used and the logit-link
can be chosen for g(·). When x and z are indicator matrices denoting if a subject
i answered item k, it follows that (6.1) is equivalent to the Rasch measurement
model as used in IRT (Kamata, 2001; Rijmen et al., 2003). Then, the random effect
θi represents the latent ability construct and the fixed effects parameters β denote
the item parameters.

Within the generalized mixed model framework it is just as well possible to
model continuous response data. In that case, an appropriate link function has to
be chosen, for instance the identity link for normally distributed data or a log-link
in case of positively skewed data. For the modeling of response times on test items
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the latter is a convenient option to account for their skewness. Let Tik denote the
response time of person i on item k, then similarly a mixed effects model can be
specified as:

E(Tik|ζi) = µ2ik = g−1
2 (η2ik) = g−1

2 (x′ikλ + z′ikζi), (6.2)

where λ is a vector of fixed effects parameters and ζi is a vector of random subject
effects. The covariate matrices x and z fulfil the same function as in (6.1), but it is
not necessary that these matrices are equivalent. Again, when x and z are indicator
matrices, denoting if a subject i answered item k, the fixed effects can be interpreted
as item effects, representing the expected RTs on the items on the log-time scale.
Then the random subject effect represents a person slowness parameter. That is,
higher a ζi leads to higher expected RTs. We will therefore interpret −ζ as speed,
this to maintain the common notation in mixed effect models.

Commonly, the random effects parameters θ and ζ are assumed to be normally
distributed with a mean of zero. Possible dependencies between responses and RTs
can be modeled by allowing these random effects to correlate. For the response Yik

and RT Tik of test taker i on item k, let µ1ik = p(Yik = 1|θi) and µ2ik = E(Tik|ζi).
Then, for the special case that x and z are indicator matrices for person i answering
item k the multivariate model is given by

logit(µ1ik) = η1ik = βk + θi (6.3)
log(µ2ik) = η2ik = λk + ζi (6.4)

where (θi, ζi) ∼ MV N(0,Σ) and

Σ =
[

σ2
θ ρ
ρ σ2

ζ

]
. (6.5)

This multivariate model simultaneously models binary and continuous responses
on test items, assumed to be nested within test takers. Different link functions can
be specified for each outcome variable. For instance, the logit-link for the binary
data and the log-link for the response times. It treats the responses as nested
within subjects by assuming fixed item effects and random subject components.
The covariance matrix Σ models the variability in ability and speed (−ζ) of the
subjects and allows for dependencies between these constructs via the covariance
component ρ. It is possible to assume independence between the two data sources
by specifying a diagonal covariance matrix for the random effects.

6.2.2 Extensions of the Model

The mixed-effects model easily allows for extensions to account for grouped data
structures or the inclusion of covariates. We will discuss these possibilities in this
section.



6.2 A Generalized Mixed Model for Multivariate Item Response Patterns 115

Including Person Covariates

In the presence of covariates for the person parameters, the analysis might benefit
in two ways. First, it allows us to assess where the differences between persons
originate from. In (6.5), a simple structural model was specified for the random
effects. It models the variability in the latent traits of the persons, thereby assuming
they originate from a common population. However, this model does not explain
the differences between persons. Including person covariates into the model might
help to understand these differences. Second, as was shown by Mislevy (1987), the
incorporation of covariates can reduce the uncertainty in the person parameters
and lead to an increase in estimation precision of person and item parameters.

Univariate approaches to explain differences in ability levels of test takers have
been presented earlier by Mislevy (1987); Adams, Wilson, and Wu (1997); Rijmen et
al. (2003) and Fox (2005). An example of regression on the random effects structure
in multivariate models can be found in Snijders and Bosker (1999). The regression
model is given by:

θi = wt
iγ1 + e1i, (6.6)

ζi = wt
iγ2 + e2i, (6.7)

where (e1i, e2i) ∼ MV N(0,Σ) and we assumed a common covariate matrix w for
both random effects. This for notational simplicity only, of course it is possible to
use different covariate matrices for ability and speed if this is required. Substitution
of the above into (6.3) and (6.4) gives:

η1ik = βk + wt
iγ1 + e1i, (6.8)

η2ik = λk + wt
iγ2 + e2i. (6.9)

A Multilevel Approach for Grouped Subjects

Grouped data structures like pupils nested in schools, or schools nested in countries
are frequently encountered in survey research. Mixed effects models are well suited
to account for such data structures, see, for instance, Fox and Glas (2001). The
model structure given in (6.3) and (6.4) accounts for multivariate responses on
fixed items that are nested within subjects. A generalization that models subjects
i = 1, . . . , nj nested in groups j = 1, . . . , J can be specified as:

θij = γ1j + e1ij , (6.10)
ζij = γ2j + e2ij , (6.11)

where (e1ij , e2ij)t ∼ MV N(0,Σj) and

Σj =
[

σ2
θj

ρj

ρj σ2
ζj

]
. (6.12)

That is, the random person effects(θ, ζ) have a group specific intercept plus a ran-
dom subject component. It is possible to model the random components as unequal
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across groups. However, sometimes it is desired to assume that Σj = Σ for numer-
ical stability. Substitution of the above into (6.3) and (6.4) gives:

η1ijk = βk + γ1j + e1ij , (6.13)
η2ijk = λk + γ2j + e2ij . (6.14)

6.3 Estimation

The above models can be fit using standard available software. We used the SAS
PROC GLIMMIX macro under SAS/STAT 9.1.3 to estimate these models. This
macro allows the modeling of multiple mixed outcomes in a mixed model frame-
work, where dependencies are modeled via the random effects structure. An impor-
tant feature is that the GLIMMIX macro allows for the specification of different
link functions for multivariate outcome variables. Thereby, the modeling framework
becomes very flexible, allowing the user to study multiple data types.

The estimation is a doubly iterative process. First, Taylor series expansions are
used to the approximate nonlinear models with random effects by a linear mixed
model. Subsequently, the linear mixed model is fitted, which is an iterative step it-
self. The default estimation technique for fitting models with random effects is know
as restricted pseudo-likelihood (Wolfinger & O’Connell, 1993). For more details on
the estimation methods, see the SAS user’s manual (SAS Institute Inc., 2008). The
SAS code for fitting the various models discussed in the empirical examples below
is given in the Appendix.

The treatment of missing data by PROC GLIMMIX depends on the kind of
observation that is missing. If an outcome observation is missing, either a response
or an RT on person-item ik, that case is ignored in the analysis. For only a few
missing responses this should not constitute serious problems. However, if there is
missing data in one of the covariates for a person i, this person is deleted entirely
from the analysis by the routine. Therefore, when estimates of the latent traits of
all test takers are required, the user might want to use imputation methods to avoid
deletion of a test taker from the analysis.

6.4 Testing Hypotheses

For parameters entering the model as fixed effects, the programm reports a t-test
that can be used to evaluate a covariate. Note, however, that the degrees of freedom
reported by SAS Proc Glimmix are not correct. The estimated degrees of freedom
is based on N × K × 2 observations, due to the way the data set is constructed
(see Appendix). The correct degrees of freedom would be N − 1. As an alternative,
the Wald test can be used, which relies upon the standard normal distribution
as the reference distribution. However, since N is usually large, the t-distribution
is quite close to the standard normal one. Testing hypotheses about covariance
components was not yet available for the GLIMMIX procedure under SAS/STAT
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9.1.3. However, proper tests for the covariance components are difficult to obtain,
since it involves evaluating hypotheses on the boundary of the parameter space
(Self & Liang, 1987; Stram & Lee, 1994).

A Test For Conditional Independence

Conditional independence is an important assumption in latent variable modeling.
This is the assumption that, conditional on the random effect, there is no depen-
dency between items. Otherwise stated, the latent variable(s) should explain all
the relationships between items. For the multivariate model above, this assumption
also extends to conditional independence between the two outcome variables, given
the random effects. Therefore, it is of interest to test the validity of the conditional
independence assumptions.

To test the conditional independence assumption between the responses and re-
sponse times, we incorporate conditional dependence on the responses as a covariate
into the RT model. This approach is not new and can be found in Glas (1999) and
Glas and Suarez-Falcon (2003), who proposed Langrange Multiplier tests for test-
ing conditional independence assumptions within IRT models. In a multivariate
setting, this kind of test has been proposed by, for instance, Gueorguieva (2001)
and van der Linden and Glas (2008) to test for conditional independence between
the outcome variables.

Let Y ∗
ik = 2Yik − 1, which takes a value of 1 for a correct response and value -1

for an incorrect response. Subsequently, this variable is incorporated into the linear
predictor for the RTs as:

η2ik = λk + ζi + γkY ∗
ik (6.15)

Now the test for conditional independence between the responses and response
times on item k reduces to testing the hypothesis for the fixed effect H0 : γk = 0
versus the alternative H1 : γk 6= 0. The same kind of test can be used to test the
conditional independence assumption between items. Within SAS, these hypotheses
can be evaluated with a t-test or F-test and confidence intervals of level 1− α can
be obtained for γ, as will be shown below.

Testing for DIF

Differential item functioning (DIF) is an important topic for test administrators
for reasons of fairness (Penfield & Camilli, 2007). An item is said to exhibit DIF
when the probability of a correct response differs for two (or more) groups of test
takers who have the same ability level. A good item should be equally difficult
for all groups of test takers in the test and not differ in difficulty for, say, whites
and Hispanics because of differences in cultural background. So far, DIF has been
assessed on the response patterns only. However, with the availability of RTs on
test items, it is possible to address the question if items are not only non-DIF with
respect to difficulty, but also with respect to time intensity of the item. If two groups
of test takers seriously differ in their time needed to complete the item this can be
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considered unfair, especially for tests with a strict time constraint. Time-DIF could
be defined as an item for which the expected response time differs across groups of
test takers, conditional on their level of speed. It has been noted that difficulty and
time intensity of an item are not necessarily related to each other (van der Linden,
2007), therefore, although they may coincide, DIF and time-DIF are two different
measures.

A simple test for DIF that has often been used makes use of an indicator variable
that takes the value of 1 for group 1 and the value of 0 for group 2 on item k. Then
the time intensity for item k equals λk + γk for group 1 and equals λk for group 2.
It is easily seen that in the case of DIF γk 6= 0, so a test for DIF then follows from
evaluating the hypothesis H0 : γk = 0 versus H1 : γk 6= 0. This test can be evaluated
using a t-test and a confidence interval of level 1−α for γ can be obtained. Another
possibility that basically gives the same result, is to use the indicator variable to
split the test takers in two groups, so that estimates of the difficulty parameter b

(1)
k

and λ
(2)
k are obtained for group 1 and group 2, respectively. Subsequently, one can

evaluate if the contrast φ = λ
(1)
k − λ

(2)
k is zero. Both ways are easily implemented

in SAS.

6.5 Illustrative Examples

6.5.1 Example 1

When the random effects correlate, we would expect to gain in estimation precision
in the model parameters. That is, we can borrow information on the response model
parameters from the response times via the correlated random effects structure.
As shown earlier by Mislevy (1987) who used collateral information from person
covariates, especially for short tests improvements can be expected. To illustrate
this, we used a 12 item figural reasoning ability test that was presented to 356
German army recruits, a test developed by Hornke and Habon (1986). The item
parameters for the response model were estimated twice. First using the responses
only, the second time the response times were taken into account too.

There was a moderate correlation between the random effects, cor(θ, ζ) = .65.
The item parameter estimates are presented in Table 6.1. In the last column of this
table, the relative increase in estimation precision is given, which was estimated as
the ratio of squared standard errors. It can be seen that for this data set, with a
moderate correlation between the random effects, the gains in precision are consid-
erable for most items. Only for item 9 (and to lesser extent item 5) the gain was
low, but this can be attributed to this item being extremely difficult (only 2 persons
answered it correctly).

6.5.2 Example 2

In this example we analyze a data set studied earlier by Wise et al. (2007). The data
were collected on a low stakes test, the Natural World Assessment Test (NAW-8).
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Table 6.1. Item parameter estimates for the German army data

Responses Responses and RTs

% gain

item β̂ S.E. β̂ S.E. in precision

01 0.4154 0.1248 0.4078 0.1198 8.52
02 0.0430 0.1233 0.0463 0.1183 8.63
03 -0.0716 0.1234 -0.0649 0.1184 8.62
04 -0.6620 0.1277 -0.6398 0.1230 7.79
05 3.1724 0.2508 3.1080 0.2476 2.60
06 0.8084 0.1293 0.7893 0.1243 8.21
07 -1.1495 0.1365 -1.1169 0.1321 6.77
08 -1.0394 0.1340 -1.0089 0.1296 6.91
09 5.4408 0.7123 5.3676 0.7111 0.34
10 0.1448 0.1235 0.1452 0.1185 8.62
11 0.6966 0.1277 0.6808 0.1227 8.32
12 -0.0843 0.1234 -0.0773 0.1185 8.44

A computerized version consisting of 65 items was administered to 396 examinees,
2nd year students who were required to participate in the university’s educational
assessment. Some additional measures were collected on the students: citizenship
(CS) was a self-report measure of the willingness to cooperate with the testing pro-
gramm of the university and test importance (TI)was a self-report scale measuring
how important the test was to the test taker. Also gender (GE) and SAT scores
were available. However, from 10 persons the SAT scores were missing and these
students were ignored in the following analyses. Aim of this example is to evaluate
to what extend the person covariates explain the differences in ability and speed
of working. Moreover, it is interesting to see what additional information the re-
sponse times present to us over the responses alone. However, first the conditional
independence assumption between the responses and response times was checked
and we tested for DIF using gender as a grouping variable.

To test for conditional independence, the proposed method above was used.
That is, we estimated (6.15) as the RT model and subsequently evaluated the
estimated effects for γik using a t-test. Interestingly, for 15 of the 65 items we
found a statistically significant result at the α = .05 level. However, upon closer
inspection, the size of the effects appeared to be very small for most items. On
the time scale, the differences between people who answered an item incorrectly
or correctly was about 2 seconds, a difference that can safely be ignored. Except
for two items. For item 44, the difference on the time scale was substantial. Test
takers who answered incorrectly or correctly completed that item in general in 25
and 43 seconds, respectively. It appeared that among test takers who answered
that item incorrectly, there were a lot who answered within a few seconds, which is
indicative for guessing behavior. Similarly, but with a smaller difference, for item 57
the difference between test takers who answered correct and incorrect was estimated
to be 12 seconds.
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The DIF analysis using gender as the classification variable revealed some items
for which a significant (p < .05) difference between males and females was found.
For 8 items, there appeared to be a difference in difficulty of that item. The biggest
effects were found for items 28 and 29, for which the estimated effects were −.93(.24)
and −.74(.25), denoting that these items were relatively easier for males. Regarding
the RTs, items 8 and 31 showed a statistically significant difference, but on the time
scale these effects amounted less than 2 seconds.

Next, the person covariates where evaluated. Item 44 and 57 were left out of
the analysis since for these items a serious violation of conditional independence
was detected. However, for the remainder of this example we were not interested
in DIF so all other items were maintained. The following full model, including all
covariates, was formulated:

η1ik = βk + CSiγ11 + TIiγ12 + GEiγ13 + SATiγ14 + e1i, (6.16)
η2ik = λk + CSiγ21 + TIiγ22 + GEiγ23 + SATiγ24 + e2i. (6.17)

The first terms on the right hand side of the above equations denote the item effects,
representing the difficulty and time intensity of the items. The remaining terms on
the right hand side denote the latent regression on the random person effects θ
and ζ. In this case the covariates enter the model as fixed effects as in (6.6) and
(6.7), and therefore a t-test can be used to evaluate their estimated coefficients at
a significance level of α = .05.

From fitting the full model, the following results were obtained. There were no
gender differences observed, neither for ability (p = .54), nor for speed (p = .74).
Also citizenship was not related to ability or speed of the test takers (p = .25 and
p = .17). As expected, the SAT scores were positively related to ability (p < .0001)
but they were not significantly related to the speed of working of the test takers
(p = .15). However, test importance explained a proportion of variance in both
traits (p < .0001). For ability this was a positive relationship, while for speed
it was negative. This led us to fitting a reduced model, leaving out gender and
citizenship for both dimensions and maintaining SAT and test importance in the
latent regressions:

η1ik = βk + TIiγ12 + SATiγ14 + e1i, (6.18)
η2ik = λk + TIiγ22 + SATiγ24 + e2i. (6.19)

For this reduced model the parameter estimates were practically unchanged up to
some decimals, except for γ24 which was now significant at α = .10. The estimated
effects for this model can be found in Table 6.2. Furthermore, the correlation be-
tween the random terms was cor (e1, e2) = .75. The latter means that test takers
working at a lower speed (speed = −ζ) in general were also the ones with a higher
score on the test. This might suggest that the quality of the test results is dubious.
Namely, a requirement for a test to be a valid measurement instrument is that
students take it seriously and do their best to solve the tasks. However, the strong
negative correlation between ability and speed hints that only students who took
their time were serious about the test. The positive and negative loadings of test
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Table 6.2. Parameter estimates for the latent regression

Parameter Estimate S.E. p(df = 385)

γ12 0.0509 0.0101 < .0001
γ14 0.0580 0.0076 < .0001
γ22 0.0027 0.0002 < .0001
γ24 0.0003 0.0001 0.0918

importance on ability and speed, respectively, and that we deal with a low stakes
test, are in line with this interpretation. Although care has to be taken to draw
strong conclusions from this one example, it shows us that response times might
reveal information about test taker behavior that would be missed when analyzing
the responses only.

6.6 Discussion

It was shown that multivariate generalized linear mixed models provide a suitable
framework for making joint inferences from responses and response times on test
items. Working within the MGLMM framework allowed us to use standard avaliable
software for fitting these models. Two empirical examples illustrated how response
time information may enhance the analysis of test data.

However, the use of standard methods also imposes restrictions on the analyses.
It was not possible, for instance, to implement more advanced measurement models
for the responses in the procedures used here. Within the mixed model framework, a
2-parameter IRT model was implemented in the NLMIXED procedure of SAS. With
the programming statements in this routine it is possible to use customized log-
likelihood specifications for different data sources. However, we were not successful
to obtain parameter estimates for the multivariate model for (well constructed)
simulated examples. (Also, strictly speaking the 2-parameter IRT models (and its
generalizations) are not linear anymore, since effects enter the model as a product of
parameters.) Other difficulties we ran into were when the number of observations
became large or in the case of many missing observations. Then the GLIMMIX
procedures sometimes did not converge.

Bayesian MCMC methods can overcome these limitations, as was illustrated in
the work of van der Linden (2007) and Fox et al. (2007). These authors developed
a Gibbs sampling approach to estimate all model parameters simultaneously, also
for 2 and 3-parameter IRT models. However, a disadvantage of these methods is
that it requires more expertise from the user to fit the models. Also, computation
times are substantially larger.

Therefore, the methods outlined in this chapter provide the user with fast and
easy to use tools to make inferences from multivariate response data. Eventually,
using these analyses as a guideline, then in subsequent steps more elaborate tools
could be used.
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6.7 Appendix: SAS code for fitting the various models

The following code was used to fit the several models using the GLIMMIX macro
under SAS/STAT 9.1.3.
The code for Example 1:
proc glimmix data= datafile;
class dist person item;
model response(event=’1’) = dist*item01 dist*item02 ... dist*item12 / solution s
noint dist=byobs(dist);
random dist / sub = person solution s type=chol;
run;

The code for fitting a multilevel model:
proc glimmix data= dataml;
class dist person group item;
model response(event=’1’) = dist*item01 dist*item02 ... dist*item20 / solution s
noint dist=byobs(dist);
random dist / sub = group solution s type=chol;
random dist / sub = person(group) solution s type=chol;
run;
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Table 6.3. Example of a data set structured for use in SAS GLIMMIX with the above
code. Note that the log of the RTs has been used.

dist person item group response item01 item02 item03 . . . item20

Binomial 1 1 1 0.00 -1 0 0 0
Normal 1 1 1 2.63 1 0 0 0

Binomial 1 2 1 1.00 0 -1 0 0
Normal 1 2 1 3.62 0 1 0 0

Binomial 1 3 1 0.00 0 0 -1 0
Normal 1 3 1 0.86 0 0 1 0

...
...

Binomial 1 20 1 0.00 0 0 0 -1
Normal 1 20 1 6.24 0 0 0 1

Binomial 2 1 1 0.00 -1 0 0 0
Normal 2 1 1 1.13 1 0 0 0

Binomial 2 2 1 0.00 0 -1 0 0
Normal 2 2 1 1.73 0 1 0 . . . 0





Epilogue

Response times on test items are a potential source of information about test taker
behavior as well as item characteristics. Item Response Theory (IRT) for making
inferences from the responses on test items has been well developed, but including
response times into this framework has not received much attention. In this thesis,
statistical methods are proposed for making simultaneous inferences from responses
and response times. The response times are modeled in a way analogous to IRT:
heterogeneity between test takers is described by latent variables (speed) and also
item characteristics are accounted for. In the Introduction, joint measurement mod-
els for ability and speed that incorporate assumptions of conditional independence
that form the cornerstone of this thesis are discussed.

Chapter 2 presents a structural multivariate multilevel modeling framework to
investigate differences in ability and speed between (groups of) test takers as a
function of covariates. Hypotheses about the structural model can be tested using
a model specific implementation of the deviance information criterium. Moreover,
an extensive discussion of the correlation structure between the person parameters
is given. A Bayes factor test provides the means to evaluate the strength of the
dependency between speed and accuracy within the population of respondents.

In Chapter 3, the population model for the item parameters is extended with a
structural component. With this extension, content specific information about the
items can be used to explain the differences in their difficulties and time intensities.
This can improve the understanding of the item characteristics, which can again
lead to improvements in test development.

Transformations to normality have obvious and much exploited advantages for
the statistical modeling of non-normal data. For modeling response times in a psy-
chometric application, the log-transform has proven to be useful. However, moti-
vated by a data set for which the lognormal model was not able to capture certain
aspects of the data, in Chapter 4, the class of Box-Cox transformations was con-
sidered, which allows for more flexibility in the description of the data. Also, its
conjugacy with the multivariate normal level-2 models for the person and item
parameters allows for straightforward modeling of the dependencies between the
parameters in the level-1 models (van der Linden, 2007; Fox et al., 2007).
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Chapter 5 discusses the role of response times as collateral information in esti-
mating IRT model parameters. The hierarchical structure of the modeling frame-
work allows for borrowing strength from the response times to improve estimation
of the IRT model parameters. The main conclusion from this chapter can be sum-
marized by stating that in order to get more accurate estimates of the test takers’
abilities, the speed at which they have responded should be estimated as well.
Moreover, since the modeling framework is symmetrical with respect to the two
estimation problems, the reverse conclusion holds too: in order to efficiently esti-
mate how fast test takers respond to the items in the test, their abilities should be
estimated, too.

A subclass of the models proposed in this thesis consists of the Rasch model and
assumes all discrimination parameters in the response time model to be equal. It is
shown in Chapter 6 that this subclass fits well into the framework of multivariate
generalized linear mixed models. Multivariate generalized linear mixed models can
handle different types of data by relating the observations to a linear model via a
(nonlinear) link function. Also, these models are suited for nested data structures
and can take account of possible dependencies between multivariate outcomes. An
advantage is that these models can be estimated with standard commercial software.
Further, a test for evaluating the conditional independence assumption between the
responses and response times is proposed. However, the necessary restrictions to
equal item discrimination parameters for both the IRT and the response time model
might prove unrealistic.

Except for the last chapter, the models in this thesis were all discussed within
the Bayesian statistical framework. The reason for the Bayesian choice resides in its
flexibility to handle complex estimation and testing problems using Markov Chain
Monte Carlo (MCMC) methods. These sampling based algorithms are computation-
ally intensive, but their advantage is that they easily deal with high-dimensional
problems where frequentist methods are often limited in the number of groups,
persons and/or items that they can handle.

Another advantage of using MCMC methods for the models discussed in this
thesis is that extensions or adjustments can be easily implemented by replacing
one sampling step in the algorithm for another. For example, the response model
can easily be adjusted to deal with polytomous response data. MCMC algorithms
for polytomous IRT models can be found in Fox (2005); Patz and Junker (1999),
and Johnson and Albert (1999), among others. The necessary adjustment of the
MCMC algorithm consists of replacing the random draws from the parameters in
the three-parameter normal-ogive IRT model with those in a polytomous model. If
subpopulations of test takers follow different strategies to solve the items, differences
in the joint distribution of accuracy and speed can be expected. To model them, a
mixture modeling approach with different latent classes for different strategies can
be used (see, for instance, Rost, 1990). Currently, the models proposed assumed the
underlying constructs of the test to be unidimensional. However, these models can
also be extended to deal with multidimensional problems (e.g., Adams, Wilson, &
Wang, 1997; Embretson, 1997). An interesting opportunity would be to investigate
the possibility of multidimensional speed as well.
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Samenvatting

De psychometrie is het vakgebied dat zich bezighoudt met de theorie en methodes
voor het meten van vaardigheden en attitudes. Omdat vaardigheden niet direct ob-
serveerbaar latent zijn (je kunt niet aan iemand zien wat hij/zij weet van quantum-
mechanica), wordt er voor het meten van vaardigheden en attitudes vaak gebruik
gemaakt van testen of vragenlijsten. Item response theorie (IRT) beschrijft hoe met
statistische modellen uit de geobserveerde antwoorden op de test conclusies kunnen
worden getrokken over de door de test te meten vaardigheid. Deze IRT modellen
beschrijven de kans op het geven van een goed antwoord op een vraag als een func-
tie van karakteristieken van het item en de latente vaardigheid van de kandidaat.
(In de psychometrie spreekt men van items en niet van vragen omdat een item niet
noodzakelijkerwijs een vraag is, maar ook een waar/onwaar stelling kan zijn of een
taak die moet worden uitgevoerd.)

Conclusies over de kwaliteit van de items in de test of het vaardigheidsniveau
van een kandidaat zijn voornamelijk gebaseerd op de antwoorden op de items. De
reaktietijden op de items werden tot voor kort vaak niet meegenomen. Dat had
vooral een praktische reden. Bij toetsafname met pen en papier is het erg lastig om
te registreren hoe lang een kandidaat doet over het beantwoorden van een vraag.
Sinds toetsen en examens steeds vaker op de computer worden afgenomen, is dit
aanzienlijk vereenvoudigd.

Daarmee wordt het interessant om de IRT modellen uit te breiden en ook reakti-
etijden mee te modelleren. Reactietijden kunnen bijvoorbeeld een extra bron van in-
formatie zijn voor het analyseren van het responsgedrag van kandidaten of gebruikt
worden voor het evalueren van de test condities met betrekking tot tijdslimitieten
(van der Linden et al., 1999). Sectie 6.5.2 in dit proefschrift geeft een illustratie van
de additionele waarde van reactietijden aan de hand van een praktisch voorbeeld.

Dit proefschrift behandelt statistische methoden voor het maken van inferen-
ties van antwoord- en reactietijdenpatronen op toetsen en examens. In de inleid-
ing wordt het raamwerk uiteengezet waar de rest van dit proefschrift op bouwt.
Waar wordt aangenomen dat de latente vaardigheid van de kandidaat ten grond-
slag ligt aan de geobserveerde antwoordpatronen wordt op analoge wijze veron-
dersteld dat snelheid van werken het onderliggende construct voor de reactietijden
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is. Voor zowel vaardigheid als snelheid wordt een meetmodel beschreven dat de
geobserveerde antwoorden/reactietijden linkt aan deze latente constructen, daarbij
rekening houdend met de karakteristieken van de items.

Het tweede hoofdstuk behandelt een structureel model dat mogelijkheden biedt
voor het verklaren van variantie in vaardigheid en snelheid van kandidaten. Deze
modeluitbreiding wordt begeleid door modelspecifieke toetsen waarmee hypothe-
ses kunnen worden gevalueerd met betrekking tot de relatie tussen covariaten en
vaardigheid en snelheid als mede hypotheses aangaande verschillen tussen groepen
van personen. Met behulp van een Bayes factor toets kunnen mogelijke afhankeli-
jkheden tussen de antwoorden en reactietijden getoetst worden.

De itemparameters in de twee meetmodellen voor vaardigheid en snelheid
beschrijven verschillen tussen de items in moeilijkheidsgraad en tijdsintensiviteit.
Echter, daarmee zijn de onderliggende oorzaken voor die verschillen nog niet
duidelijk. Om daar dieper op in te gaan behandelt hoofdstuk 3 een structureel
model voor de itemparameters. Met dit model kan de relatie tussen de structuur-
en inhoudskenmerken van het item en zijn moeilijkheid/tijdsintensiviteit onder-
zocht worden. Een beter begrip van deze relaties is interessant voor het ontwikke-
len van nieuwe items. De methoden worden geillustreerd met een analyse van een
grootschalige intelligentietest waarbij een cognitief ontwerp aan de items ten grond-
slag ligt.

Omdat reaktietijden een ondergrens bij nul hebben is hun verdeling niet sym-
metrisch (als bij een normale verdeling) maar wordt gekarakteriseerd door een lan-
gere staart aan de rechterzijde van de verdeling. De log-transformatie is veelvuldig
toegepast voor het modelleren van reactietijden, waarna de getransformeerde tij-
den een meer symmetrische verdeling hebben, zodat vervolgens een normale verdel-
ing verondersteld kan worden. Het gebruik van een normale verdeling heeft vele
voordelen, omdat de matematische eigenschappen goed bekend zijn en er lineaire
modellen gebruikt kunnen worden. Daardoor vereenvoudigen verdere analyses sterk
ten opzichte van niet-lineaire alternatieven. Echter, de log-transformatie levert niet
per definitie normaal verdeelde data op, zoals een voorbeeld in hoofdstuk 4 illus-
treerd. Om die reden wordt er in dat hoofdstuk gekeken naar de klasse van Box-Cox
transformaties. Het gebruik van een volledige klasse van transformaties geeft meer
flexibiliteit in het beschrijven van reactietijdenverdelingen. Tevens poogt de Box-
Cox transformatie de normale verdeling zo goed mogelijk te benaderen, waaraan
eerdergenoemde voordelen verbonden zijn.

Zoals in een aantal voorbeelden in dit proefschrift van analyses met echte test
gegevens blijkt, kunnen er (sterke) correlaties tussen de antwoorden en reaktietijden
gevonden worden. Deze correlaties kunnen resulteren vanuit de personen, omdat er
mogelijk een verband tussen vaardigheid en snelheid bestaat, ofwel omdat er re-
laties op item niveau zijn, bijvoorbeeld tussen moeilijkheid en tijdsintensiviteit van
de items. Hoofdstuk 5 laat zien dat het gebruik van deze correlaties tussen de
persoons- of itemparameters in de meetmodellen leidt tot accuratere schattingen
van deze modelparameters. Dat wil zeggen, bij correlaties ongelijk aan nul bevatten
de reaktietijden informatie over de IRT model parameters en vormen daarbij een
extra bron van informatie naast de al beschikbare antwoorden. Hoofdstuk 5 laat
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zien hoe de opbouw van het grotere model voor simultane analyse van antwoorden
en reactietijden zich goed leent om gebruik te maken van deze mogelijke correlaties.
Vanzelfsprekend geldt dit principe van extra informatie ook voor het schatten van
de parameters in het reactietijden model. Vanwege de symmetrie van het schat-
tingsprobleem bevatten de antwoorden net zo goed informatie over de parameters
in het reactietijden model als vice versa.

Hoofdstuk 6 tot slot, bespreekt een subklasse van de in dit proefschrift besproken
modellen. Deze subklasse restricteert de meetmodellen waarbij wordt aangenomen
dat er geen verschillen in de discriminatieparameters van de items zijn en ook de
gokkans in het meetmodel voor vaardigheid genegeerd wordt. Deze subklasse blijkt
goed te passen in een ruime klasse van statistische modellen die bekend staan als
multivariaat gegeneraliseerde lineaire gemixte modellen (multivariate generalized
linear mixed models). De voordelen van het gebruik van een dergelijke klassen van
modellen voor het simultaan analyseren van antwoorden en reactietijden is dat er
een directe link is met een brede statistische literatuur en tevens dat er commerciele
software gebruikt kan worden voor het verkrijgen van parameterschattingen. On-
danks dat in de praktijk de genoemde vereenvoudigen te restrictief kunnen blijken,
geven deze methodes toch een eenvoudig instrument om een aantal verkennende
onderzoeken uit te voeren.

Met uitzondering van hoofdstuk 6 zijn alle statistische methodes in dit proef-
schrift ontwikkeld vanuit de Bayesiaanse statistiek. De redenen daarvoor zijn prak-
tisch van aard. Een Bayesiaanse benadering maakt het gebruik van stochastis-
che simulatietechnieken, beter bekend als Markov Chain Monte Carlo (MCMC)
technieken, mogelijk voor het verkrijgen van parameterschattingen. Deze MCMC
methodes zijn zeer geschikt voor hoogdimensionele schattings- en testproblemen,
waar frequentistische methodes al snel gerestricteerd blijken wat betreft het aantal
groepen, personen en items dat zij aankunnen. Een ander voordeel van de Bayesi-
aanse benadering en MCMC is dat modeluitbreidingen en teststatistieken eenvoudig
in de schattingsprocedures ingebouwd kunnen worden, wat de onderzoeker flexi-
biliteit geeft voor aanpassingen.
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